
Search for proton decay via $p \rightarrow e^+ \eta$ and $p \rightarrow \mu^+ \eta$ in Super-Kamiokande

Natsumi Taniuchi for the Super-Kamiokande Collaboration NNN 2024

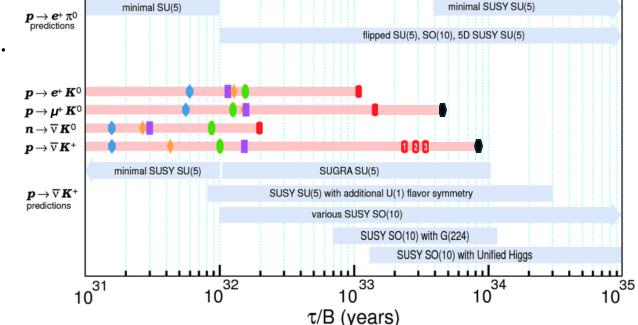
Proton Decay — Key to Probe GUTs

- Grand Unified Theories [1]: Unification of Electromagnetic, weak and strong.
 - \checkmark Extension of SM by incorporating SU(3)×SU(2)×U(1) into larger symmetry groups
 - ✓ GUTs scale: ~10¹⁶ GeV
 - ✓ Baryon number violation allowed
- Proton decay search is the direct probe for GUTs.
 - ✓ Various decay channels depending on models [2]
 - Non-SUSY GUTs: p→e⁺π⁰
 - SUSY GUTs: p→vK⁺

[1] P. Nath and P. Fileviez Perez, Phys. Rep. 441, 191 (2007).

[2] N. Sakai and T. Yanagida, Nucl. Phys. B 197, 533 (1982).

J. Hisano, H. Murayama, and T. Yanagida, Nucl. Phys. B 402, 46 (1993).



Proton Decay — Key to Probe GUTs

- Grand Unified Theories [1]: Unification of Electromagnetic, weak and strong
 - \checkmark Extension of SM by incorporating SU(3)×SU(2)×U(1) into larger symmetry groups

 $p \rightarrow e^+ \pi^0$

- ✓ GUTs scale: ~10¹⁶ GeV
- ✓ Baryon number violation allowed
- Proton decay search is the direct probe for GUTs.
 - ✓ Various decay channels depending on models [2]
 - Non-SUSY GUTs: p→e⁺π⁰
 - SUSY GUTs: p→vK⁺
 - ✓ Extremely long lifetimes

Soudan Frejus Kamiokande IMB

[1] P. Nath and P. Fileviez Perez, Phys. Rep. 441, 191 (2007).

[2] N. Sakai and T. Yanagida, Nucl. Phys. B 197, 533 (1982).

J. Hisano, H. Murayama, and T. Yanagida, Nucl. Phys. B 402, 46 (1993).

Super-K I+II+III Super-K I-IV

Various Decay Channels of Protons

• Other possible modes including heavy non-strange mesons. Some models [3] suggest decay rates comparable to $p \rightarrow e^+\pi^0$

$$\checkmark p \rightarrow l^+ \eta, p \rightarrow l^+ \rho, p \rightarrow l^+ \omega \ (l^+ = e^+, \mu^+)$$

✓ Latest search via these modes at Super-Kamiokande [4]

To tackle extremely rare searches:

- Large number of proton targets
- High detection efficiency and Low BG
- Comprehensive search via various decay channels in addition to "the golden channels"
- *p*→e⁺η, *p*→μ⁺η searches at Super-Kamiokande

```
[3] M. Machacek, Nucl. Phys. B 159, 37 (1979)
M. B. Gavela, A. Le Yaouanc, L. Oliver, O. P`ene, and J. C. Raynal, Phys. Lett. B 98, 51 (1981).
J. F. Donoghue, Phys. Lett. B 92, 99 (1980).
[4] K. Abe et al. (The Super-Kamiokande Collaboration), Phys. Rev. D 96, 1 (2017).
```

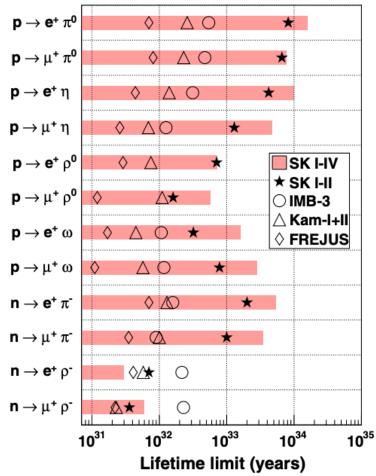
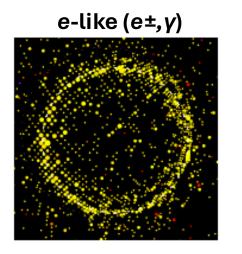
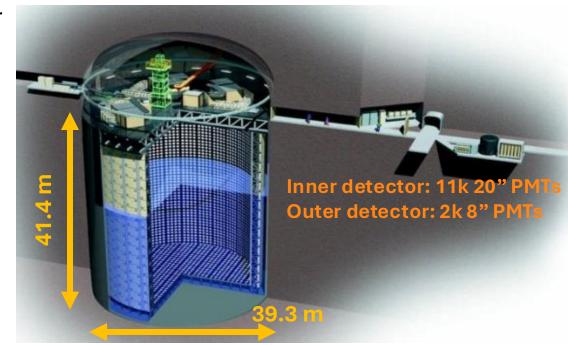


Fig. taken from [4]

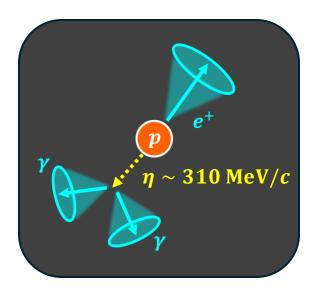





Super-Kamiokande Detector

Nucleon Decay Experiment

- 50 kton (22.5 kton fiducial) Water Cherenkov detector located at Kamioka mine, Japan.
 - ~1000 m underground to reduce cosmic ray BGs.
- Particle Identification:
 - e-like: fuzzy rings (EM shower).
 - μ -like: rings with sharp edges.



- √ 20+ years data from 1996 (Gd loaded from 2020)
- ✓ Advantage of free proton
- ✓ Neutron tagging available from SK-IV period (2008-)

Why eta?

- This Study: $p \rightarrow e^+ \eta$, $p \rightarrow \mu^+ \eta$ ($\eta \rightarrow 2\gamma$, $\eta \rightarrow 3\pi^0$) search
 - Similar to golden $p \rightarrow e^+\pi^0$: 3 e-like rings
 - High efficiency: all decay products are detectable
 - Back-to-back emission: monochromatic momentum of η (~310 MeV/c)
- → Reconstruct proton mass and momentum.

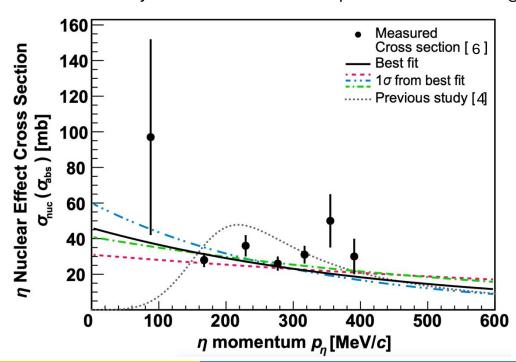
Why eta?

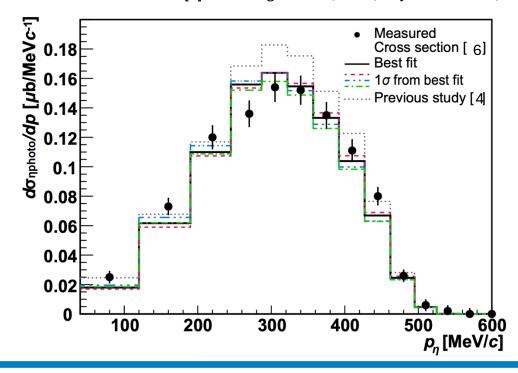
- This Study: $p \rightarrow e^+ \eta$, $p \rightarrow \mu^+ \eta$ ($\eta \rightarrow 2\gamma$, $\eta \rightarrow 3\pi^0$) search
 - Similar to golden $p \rightarrow e^+\pi^0$: 3 e-like rings
 - High efficiency: all decay products are detectable
 - Back-to-back emission: monochromatic momentum of η (~310 MeV/c)
- → Reconstruct proton mass and momentum.

- Dominant systematic uncertainty from nuclear effect modelling.
- This Study:
 - Update eta-nuclear interaction cross section
 - Additional data of ~18%
 Total of 0.373 Mton×yrs.

Modes	Meson nuclear effect	Hadron propagation in water	N-N correlated decay	Fermi momentum	Detector performances	Total
$p \to e^+ \eta \ (2\gamma, \text{ upper})$	26		8	9	2	29
$p \to e^+ \eta$ (2 γ , lower)	9		3	13	2	16
$p \rightarrow e^+ \eta \ (3\pi^0)$	12		4	15	4	20
$p \to \mu^+ \eta \ (2\gamma, \text{ upper})$	27		9	10	3	30
$p \to \mu^+ \eta \ (2\gamma, \text{ lower})$	11		3	12	3	17
$p \to \mu^+ \eta \ (3\pi^0)$	17		6	2	5	19

[4] K. Abe et al. (The Super-Kamiokande Collaboration), Phys. Rev. D 96, 1 (2017).




Improved σ_{nuc} Estimation and Uncertainty

- Assume σ_{nuc} as a function of η momentum lab. frame: $\sigma_{\text{nuc}} = a \times \exp(-b \times p_n)$
- $\sigma_{
 m nuc}$ and uncertainty estimated by least χ^2 method to fit functional forms to measured $d\sigma_{\eta
 m photo}/dp$ and $\sigma_{
 m abs}$
- Improvements both in signal efficiency (~10%) and a reduction in this previously dominantly sys. uncertainty by ~65%

*Additional 6% systematic errors on data points not shown in figures.

[6] M. R"obig-Landau, et al., Phys. Lett. B 373, 45 (1996).

Event Simulations

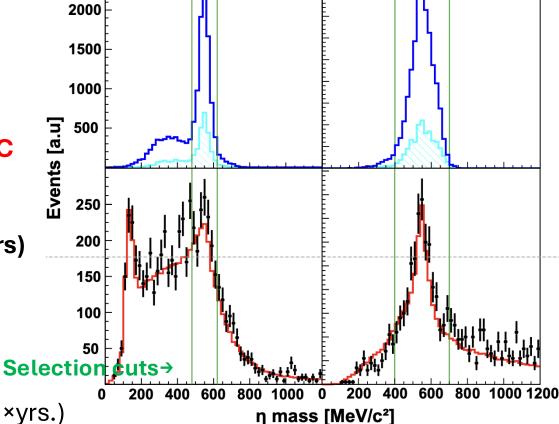
Signal: Proton decay MC

- 2 free protons: two body decay, distinct signal
- 8 bound protons in O nuclei:
 - Subject to Fermi motion, nuclear binding energy, and correlated momentum effects
 - Nuclear effects (deexcited nuclear γ, absorption, scattering)

Background: Atmospheric v MC

- Flux taken from Honda calculation [7]
- Meson production (ex. π , η) from atmospheric neutrino interactions in water simulated by NEUT by the Rein-Sehgal Model [8].

[7] M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 1 (2007).
M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 83, 1 (2011).
[8] D. Rein and L. M. Sehgal, Ann. Phys. (N. Y.) 133, 79 (1981).



Event Selections

- 2 proton decay channels: $p \rightarrow e^+ \eta$, $p \rightarrow \mu^+ \eta$
- 2 eta decay channels: $\eta \rightarrow 2\gamma$, $\eta \rightarrow 3\pi^0$
- Event selection cuts on:
 - Number of rings
 - PID
 - Number of Michel e
 - η mass
 - Proton momentum
 - Proton mass

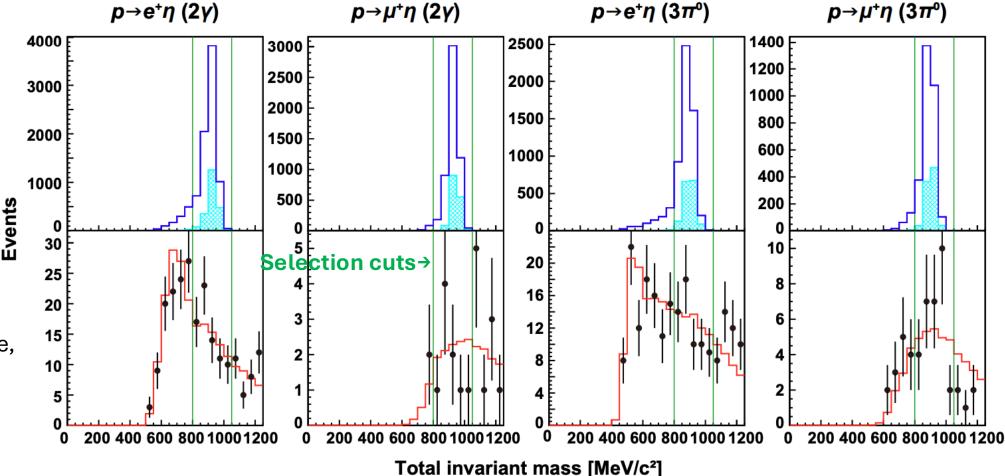
Proton decay MC
(bound/free)
Atmospheric v MC
(2000 years)
Data
(0.373 Mton*years)

p→e⁺η (3π°)

 $p\rightarrow e^+\eta$ (2 γ)

2500

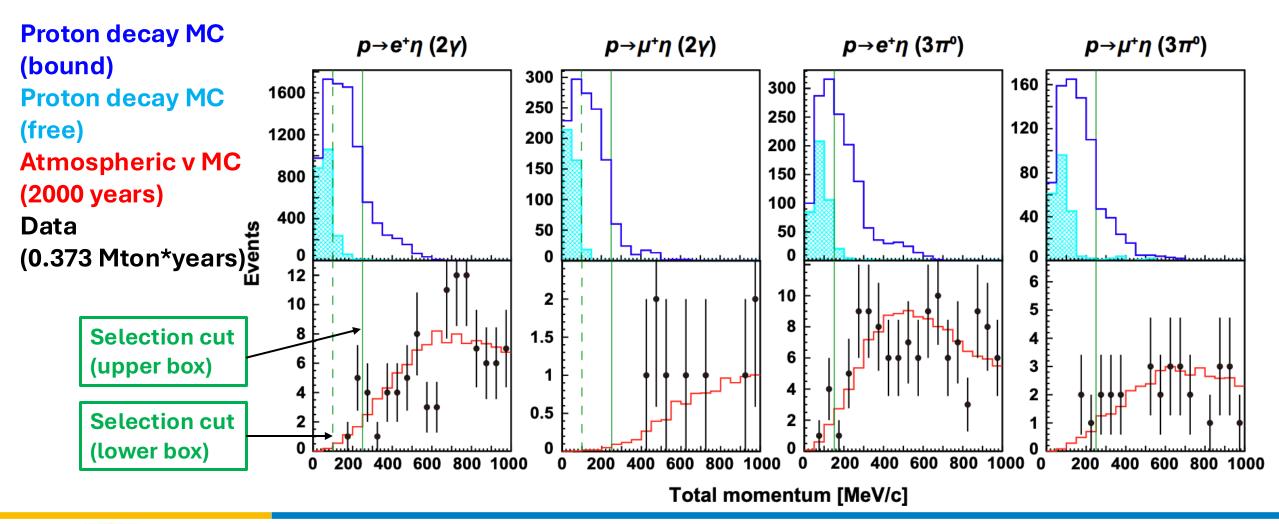
- Two signal bins defined for p→l⁺η (η→2γ) depending on p momentum
- P_{proton} < 100 MeV/c expects <u>BG rate of <<0.1</u> (0.373 Mton×yrs.)



Data Agreement Check: Proton Mass

Proton decay MC
(bound)
Proton decay MC
(free)
Atmospheric v MC
(2000 years)
Data
(0.373 Mton*years)

Cuts on #ring, #Michel-e, PID, η mass, #neutron are applied.


Signal Box Blinded.

Data Agreement Check: Proton Momentum

Backgrounds and Systematics

Brookdown	of BC	ovente
Breakdown	OIBG	events

2.00.10.01.					
Interaction	p→e⁺η	p→μ⁺η			
CCQE	6%	1%			
CC1π	19%	14%			
CC multi-π	25%	36%			
CC/NC1η	6%	11%			
CC others	7%	8%			
NC	37%	20%			

Mode	Signal Efficiency	Background Rate [events]	Systematic Uncertainty on Signal Efficiency	Systematic Uncertainty on Background Rate
p→e⁺η				
(η→2γ, upper)	12.6%	0.21 ± 0.05	14.7%	31.6%
(η→2γ, lower)	8.1%	<0.01	15.5%	31.6%
(η→3π ⁰)	8.3%	0.20 ± 0.05	17.9%	28.9%
p→μ⁺η				
(η→2γ, upper)	9.0%	0.11 ± 0.02	15.6%	39.9%
(η→2γ, lower)	6.6%	0.12 ± 0.02	16.8%	39.9%
(η→3π ⁰)	8.6%	0.84 ± 0.08	13.8%	23.0%

[4] K. Abe et al. (The Super-Kamiokande Collaboration), Phys. Rev. D 96, 1 (2017).

Backgrounds and Systematics

Brea	kdowr	of RG	events
DIEA	KUUWI	שט וט ו	GAGIII

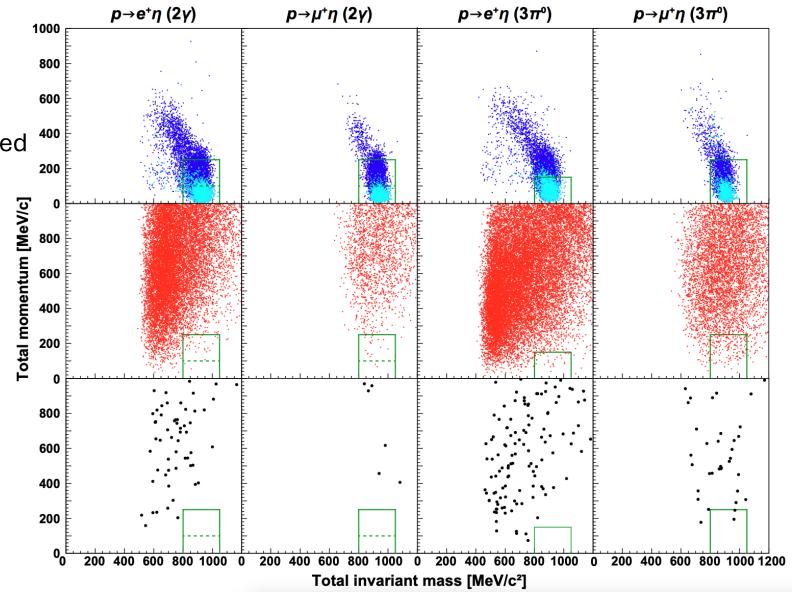
Interaction	p→e⁺η	p→μ⁺η
CCQE	6%	1%
CC1π	19%	14%
CC multi-π	25%	36%
CC/NC1η	6%	11%
CC others	7%	8%
NC	37%	20%

Mode	Signal Efficiency	Background Rate [events]	Systematic Uncertainty on Signal Efficiency	Systematic Uncertainty on Background Rate
p→e⁺η				
(η→2γ, upper)	12.6%	0.21 ± 0.05	14.7%	31.6%
(η→2γ, lower)	8.1%	<0.01	15.5%	31.6%
(η→3π ⁰)	8.3%	0.20 ± 0.05	17.9%	28.9%
p→μ⁺η				
(η→2γ, upper)	9.0%	0.11 ± 0.02	15.6%	39.9%
(η→2γ, lower)	6.6%	0.12 ± 0.02	16.8%	39.9%
(η→3π ⁰)	8.6%	0.84 ± 0.08	13.8%	23.0%

Increase by ~10% from previous study [4]

decrease by ~50% from previous study [4]

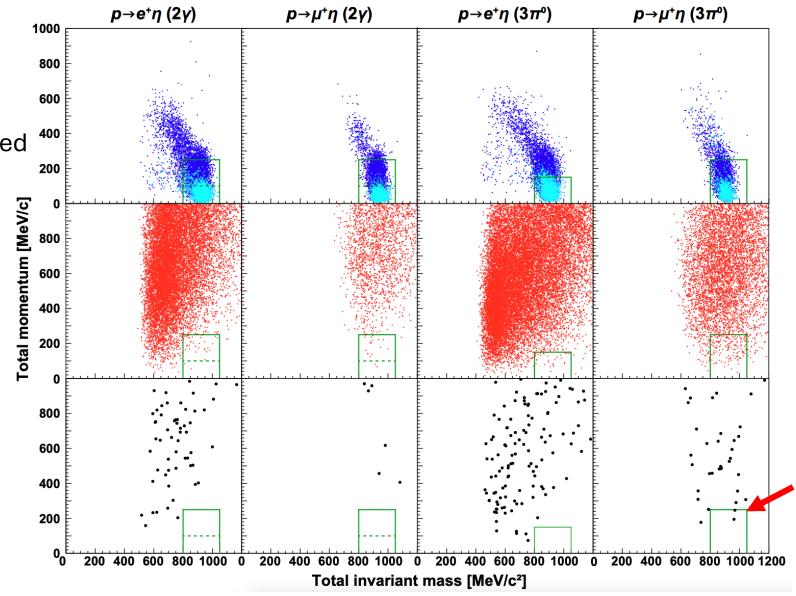
[4] K. Abe et al. (The Super-Kamiokande Collaboration), Phys. Rev. D 96, 1 (2017).


Results *p*→e⁺η (2γ) p→e⁺η (3π°) $p \rightarrow \mu^{+} \eta$ (2 γ) $p\rightarrow \mu^+\eta$ (3 π^0) 1000 800 600 Cuts except final selection 400 on proton mass/momentum applied 200 200 Signal bins 800 **Proton decay MC (Bound)** 600 **Proton decay MC (Free)** 400 Atmospheric v MC (2000 years) 200 Data (0.373 Mton*years) 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 1200 Total invariant mass [MeV/c²]

Results

 Cuts except final selection on proton mass/momentum applied

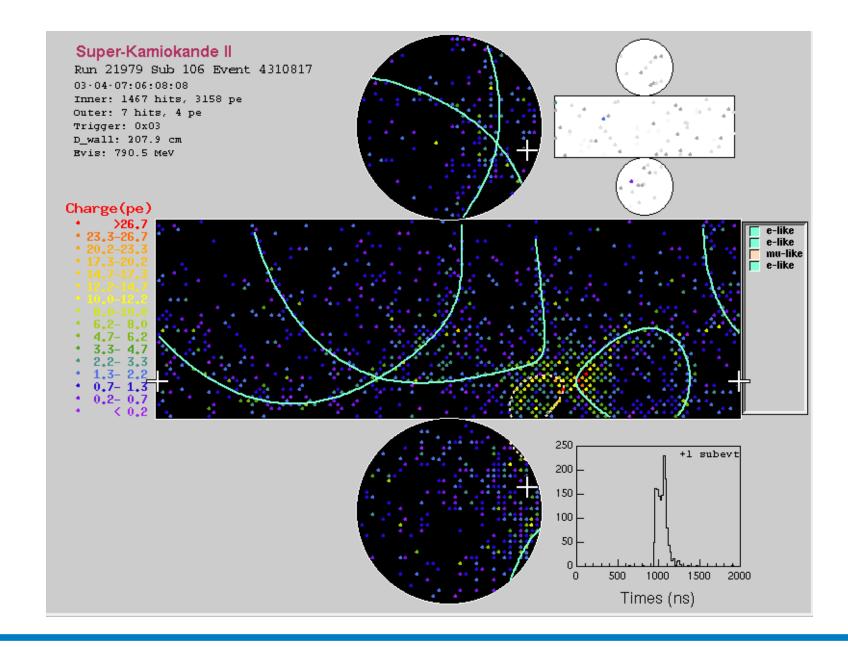
Proton decay MC (Bound)
Proton decay MC (Free)
Atmospheric v MC (2000 years)
Data (0.373 Mton*years)



Results

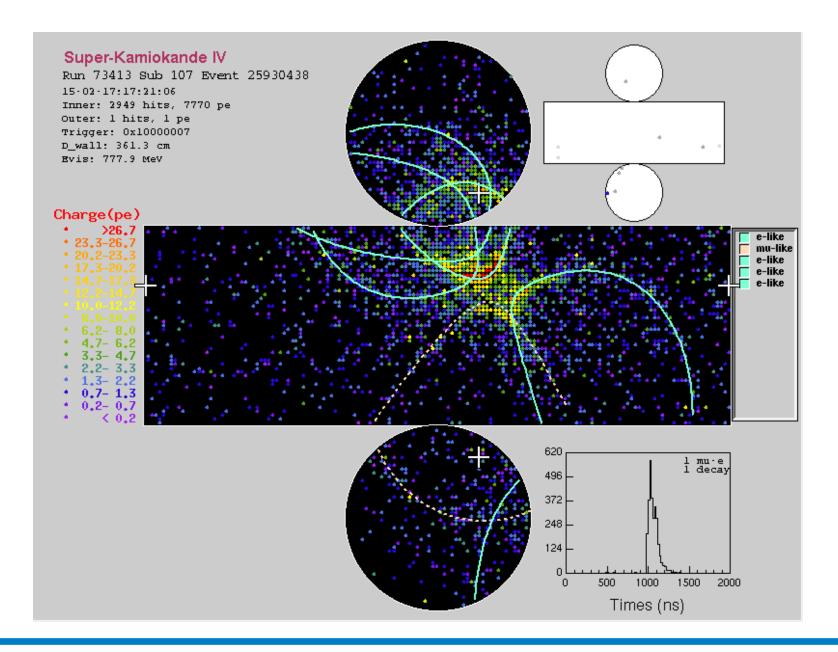
 Cuts except final selection on proton mass/momentum applied

• Two events remain in the final signal region of $p \rightarrow \mu^+ \eta \ (3\pi^0)$


Proton decay MC (Bound)
Proton decay MC (Free)
Atmospheric v MC (2000 years)
Data (0.373 Mton*years)

Candidate 1

- 3 e-like ring
- 1 µ-like rings
- p_{proton}: 246.9 MeV/c
- m_{proton}: 968.2 MeV/c²
- The same event selected in previous analysis



Candidate 2

- 4 e-like ring
- 1 µ-like rings
- p_{proton}: 194.9 MeV/c
- m_{proton}: 961.8 MeV/c²
- The same event selected in previous analysis

Modes	Background [events]	Candidate [events]	Probability [%]	Lifetime limit at 90% CL
p→e⁺η	0.42 ± 0.13	0	65.7	
p→μ⁺η	0.93 ± 0.25	2	23.9	

Number of candidates consistent with background prediction. No indication of proton decay.

Modes	Background [events]	Candidate [events]	Probability [%]	Lifetime limit at 90% CL
p→e⁺η	0.42 ± 0.13	0	65.7	
p→μ⁺η	0.93 ± 0.25	2	23.9	

- Number of candidates consistent with background prediction. No indication of proton decay.
- Searches for proton decay via p→e⁺η and p→μ⁺η with
 - Updated nuclear effect:
 - Improvement of signal efficiency by 10%
 - Reduction of dominantly systematic uncertainty by a factor of 3
 - Additional 55.7 kton-years of SK-IV data (~18% increase)

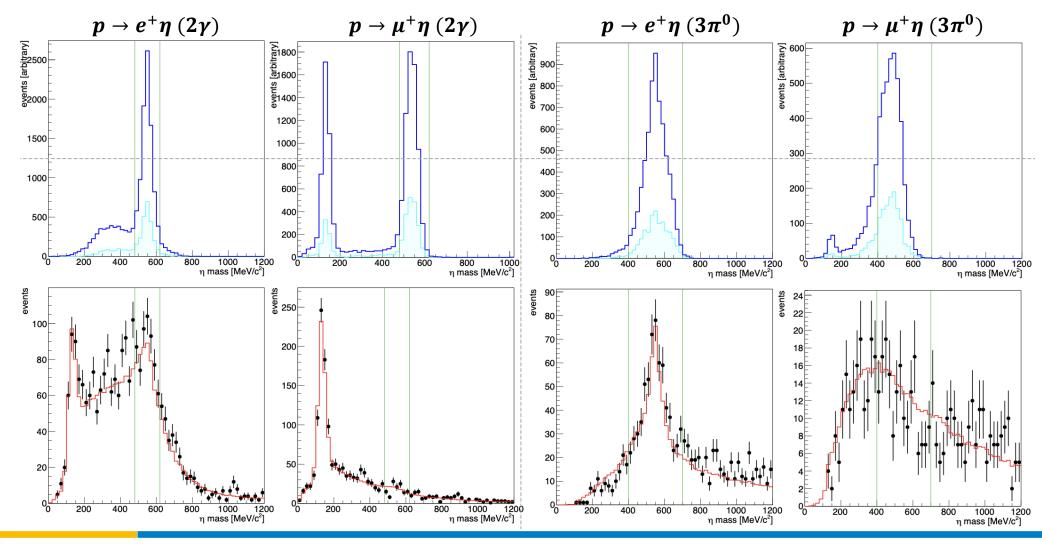
Modes	Background [events]	Candidate [events]	Probability [%]	Lifetime limit at 90% CL
p→e⁺η	0.42 ± 0.13	0	65.7	
p→μ⁺η	0.93 ± 0.25	2	23.9	

- Number of candidates consistent with background prediction. No indication of proton decay.
- Searches for proton decay via p→e⁺η and p→μ⁺η with
 - Updated nuclear effect:
 - Improvement of signal efficiency by 10%
 - Reduction of dominantly systematic uncertainty by a factor of 3
 - Additional 55.7 kton-years of SK-IV data (~18% increase)
- Lower lifetime limits on both decay channels have increased by a factor of 1.5 relative to the previous analysis, which are the most stringent to date.

Modes	Background [events]	Candidate [events]	Probability [%]	Lifetime limit at 90% CL
p→e⁺η	0.42 ± 0.13	0	65.7	1.4 × 10 ³⁴ years
p→μ⁺η	0.93 ± 0.25	2	23.9	7.3 × 10 ³³ years

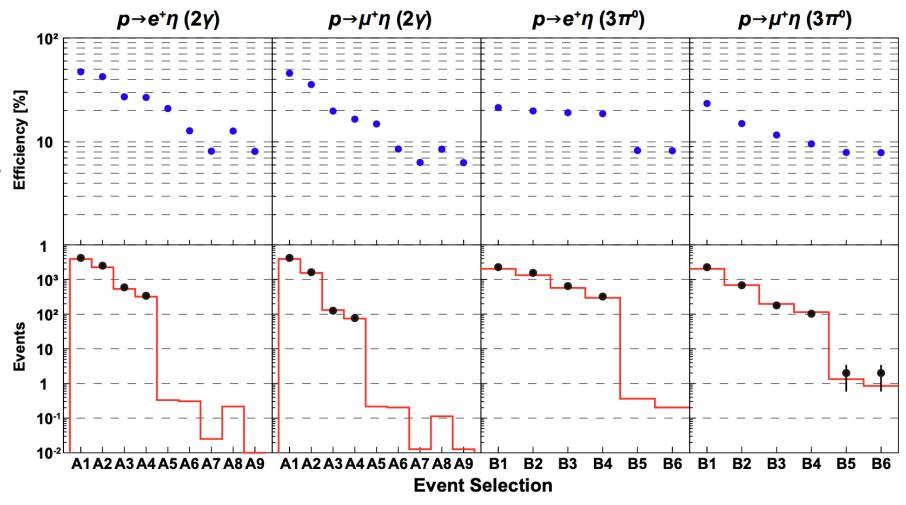
Paper available at arXiv:2409.19633

Backup Slides



FV, nring and PID cut applied.

Normalized by oscillation weight and livetime.


Proton decay MC (Free protons) SKI-IV combined Atm. v MC Combined SKI~IV data (NEUT5.4.0 may19 ver)

Selection Effectively Identifying Signals

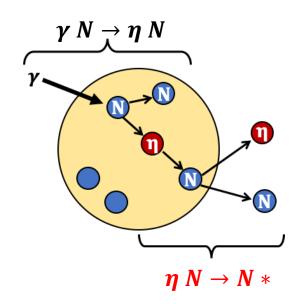
- Nring agreement
- Dint forget to hide • Dint forget to nide the last bin
 • Which corresponds
- to what

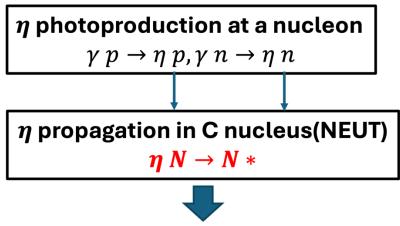
Event Selections

• 2 proton decay channels: $\mathbf{p} \rightarrow \mathbf{e}^{\dagger} \mathbf{\eta}$, $\mathbf{p} \rightarrow \boldsymbol{\mu}^{\dagger} \mathbf{\eta}$, 2 eta decay channels: $\mathbf{\eta} \rightarrow \mathbf{2} \mathbf{\gamma}$, $\mathbf{\eta} \rightarrow \mathbf{3} \mathbf{\pi}^{0}$

		selection		η→2γ
A1		Number of Rings		3
A2		PID	p→e⁺η	all e-like
AZ		PID	p→μ⁺η	1 μ-like, 2 e-like
АЗ		η mass		$480 \le m_{\eta} \le 620$
A4	A4 Michel e		p→e⁺η	0
A 4	A4	Michere	p→μ⁺η	1
A5		p mass		$800 \le m_p \le 1050$
AS		p momentum		$p_p \leq 250$
A6		p momentum		$100 < p_p \le 250$
	A7	Tagged neutron		0
A8		p momentum		$p_p \leq 100$
	A9	Tagged neutron		0

	selection		η→3π0
B1	Number of Rings		4 or 5
B2	PID	p→e⁺η	all e-like
		p→μ⁺η	1 μ -like, the others e-like
В3	η mass		$400 \le m_{\eta} \le 700$
B4	Michel e	p→e⁺η	0
		p→μ⁺η	1
	p mass		$800 \le m_p \le 1050$
B5	p momentum	p→e⁺η	p _p ≤ 150
		p→μ⁺η	$p_p \leq 250$
B6	Tagged neutron		0


Two-box momentum separation. (upper/lower box)

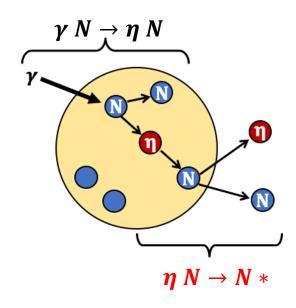


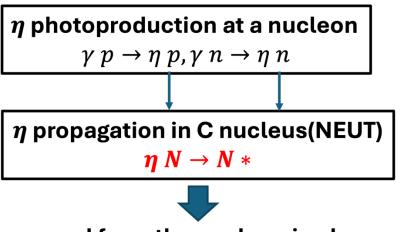
Eta Affected by Nucleons

- η nuclear effect: impact on the number of observable η
- Intranuclear interaction simulated by NEUT [5]
 - $d\sigma_{\eta photo}/dp$: Measured η photo production data of from Mainz experiment [6]
 - σ_{nuc}:
 - **Previous study** Berit-Wigner Formula
 - This study
- Measured $d\sigma_{\rm nphoto}/dp$ compared with NEUT estimation, which includes the calculated $\sigma_{\rm nuc}$
- Source error on σ_{nuc} decided: <u>Previous study</u> Conservatively by ranging σ_{nuc} -50% - +100% <u>This study</u>

 η escaped from the nucleon is observable

[5] Y. Hayato, Acta Phys. Pol. B 40, 2477 (2009).[6] M. R¨obig-Landau, et al., Phys. Lett. B 373, 45 (1996).





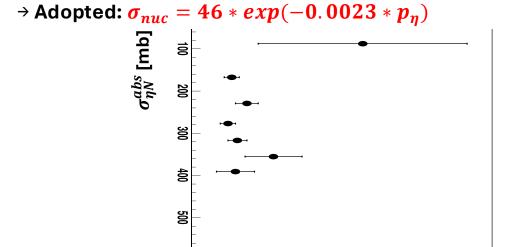
Eta Affected by Nucleons

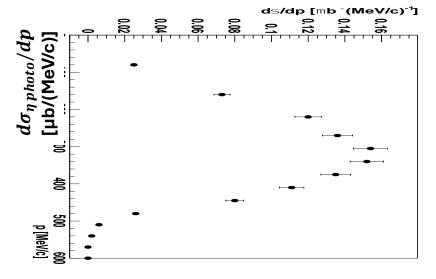
- η nuclear effect: impact on the number of observable η
- Intranuclear interaction simulated by NEUT [5]
 - $d\sigma_{\eta photo}/dp$: Measured η photo production data of from Mainz experiment [6]
 - σ_{nuc}:
 - **Previous study** Berit-Wigner Formula
 - This study Measured absorption cross section [6] Assume $\sigma_{\rm abs} \sim \sigma_{\rm nuc.}$ Independently deduced from $d\sigma_{\rm nphoto}/dp$
- Measured $d\sigma_{\rm nphoto}/dp$ compared with NEUT estimation, which includes the calculated $\sigma_{\rm nuc}$
- Source error on σ_{nuc} decided: Previous study Conservatively by ranging σ_{nuc} -50% - +100% This study By least χ^2 method to fit formulised σ_{nuc} to data.

[5] Y. Hayato, Acta Phys. Pol. B 40, 2477 (2009).[6] M. R¨obig-Landau, et al., Phys. Lett. B 373, 45 (1996).

 η escaped from the nucleon is observable Compare with MAINZ experiment data

Analysis Review: Estimation of


Previous analysis[1]: σ_{nuc} estimated by Breit-Wigner formula with uncertainty of -50%+100%.


→ Dominant error on signal efficiency of ~30%.

Estimate σ_{nuc} that can reproduce the measured $d\sigma_{\eta \ photo}/dp$, $\sigma_{\eta N}^{abs}$ in MAINZ experiment[2].

- ✓ $d\sigma_{\eta \; photo}/dp$: Simulated by NEUT.
- $\checkmark \sigma_{\eta N}^{abs}$: Considered as $\sigma_{nuc} \sim \sigma_{\eta N}^{abs}$.
- \rightarrow Evaluate the best σ_{nuc} and its uncertainty by least χ^2 method fitting.

[2] M. Robig-Landau et al., Phys.Lett. B 373 45 (1996).

 p_η [MeV/c]

 p_{η} [MeV/c]

