3 – 5 de dez. de 2025
FEEC / UNICAMP
Fuso horário America/Sao_Paulo
É com grande satisfação que convidamos toda a comunidade do DCA a participar da décima sétima edição do nosso tradicional encontro

From Distributions to Programs: A Benchmark for Algorithmic Inference

4 de dez. de 2025 10:32
12m
Sala da Congregação (FEEC / UNICAMP)

Sala da Congregação

FEEC / UNICAMP

Av. Albert Einstein, Nº 400
Trabalho em estágio inicial Sessões orais

Palestrante

Eduardo Sakabe (UNICAMP)

Descrição

We introduce the Algorithmic Inference Benchmark (AIB), a framework designed to distinguish whether learning systems capture the generative mechanisms underlying data or merely fit statistical regularities. AIB constructs synthetic datasets using known rules, allowing independent control over algorithmic and statistical difficulty. By manipulating the generative rule and sampling process, AIB enables controlled experiments that reveal whether models rely on algorithmic abduction or statistical prediction. This conceptual work outlines the design principles of AIB and motivates its use for developing learning systems with stronger algorithmic priors.

Autor

Co-autores

Materiais de apresentação