Compensação Inteligente da Degradação do Pó em Impressão 3D por Laser

Danilo Polly d166387@dac.unicamp.br Wu Shin Ting

ting@unicamp.br

Departamento de Engenharia de Computação e Automação (DCA) Faculdade de Engenharia Elétrica e de Computação (FEEC) Universidade Estadual de Campinas (UNICAMP)

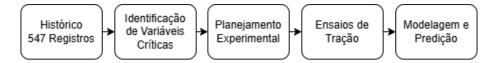


Figura 1: Fluxograma do estudo, indicando a integração entre a análise histórica e a etapa experimental controlada.

Resumo

O Laboratório Aberto de Impressão 3D (LAPrint) do CTI Renato Archer possui longa experiência em manufatura aditiva, incluindo processos de fusão em leito de pó por laser (PBF-LB/P) com Poliamida-12. Devido ao alto custo e à limitada disponibilidade desse material, o laboratório observou que ajustes nos parâmetros críticos — especialmente temperatura do leito e potência do laser — podem mitigar a degradação do pó e estender sua vida útil. Essa evidência motivou a busca por um método mais sistemático e quantitativo, reduzindo a dependência de ajustes empíricos.

Este estudo integra dados históricos de produção e experimentos controlados para avaliar como variações de processo influenciam as propriedades mecânicas obtidas por ensaios de tração conforme a norma ASTM D638-22. A hipótese é que a degradação do material pode ser parcialmente compensada por ajustes específicos desses parâmetros. A metodologia compreende a compilação dos registros, a execução dos experimentos e análises estatísticas para identificar padrões relevantes. Os resultados preliminares indicam a viabilidade dessa abordagem e fundamentam o desenvolvimento futuro de um modelo capaz de apoiar sistemas de controle automatizado do processo.

Palavras-Chave — Manufatura aditiva, Fusão em leito de pó, Poliamida-12, Degradação de material, Parâmetros de processo, Ensaios mecânicos, Modelagem preditiva.

1. Introdução

Dentre as diversas tecnologias de manufatura aditiva existentes, a fusão em leito de pó, por laser, em polímero (Powder Bed Fusion - Laser Beam - Polymer (PBF-LB/P) destaca-se pela capacidade de produzir peças complexas com materiais de engenharia [1]. Nesse processo, modelos tridimensionais são convertidos em camadas de espessura controlada, fundindo seletivamente regiões de um leito de pó por meio de um feixe de laser.

A Poliamida-12 (PA12) é o material mais utilizado nesse tipo de processo, apresentada em pó com granulometria entre 10 e 100 µm. Sua produção envolve etapas complexas, resultando em poucos fornecedores globais e alto custo, especialmente relevante em países emergentes. Durante a fabricação, parte do pó não é fundida e pode ser reaproveitada mediante mistura com material virgem — procedimento conhecido como refreshment [2], recomendado pelos fabricantes para manter estabilidade das propriedades mecânicas, previsibilidade de processo e redução de resíduos.

No Laboratório Aberto de Impressão 3D (LAPrint) do CTI Renato Archer, com mais de 25 anos de experiência acumulada na tecnologia, observou-se o comportamento do material ao longo de vários ciclos de uso, sem a prática de refreshment. Por meio de inspeções visuais e ensaios de tração conforme a norma ASTM D638-22 [3], verificou-se que ajustes empíricos em parâmetros críticos — especialmente temperatura do leito e potência do laser — permitiam compensar parcialmente a degradação do pó e manter a qualidade das peças. Essa evidência motivou a formulação

da hipótese de que a degradação térmica e oxidativa do polímero pode ser mitigada por ajustes sistemáticos desses parâmetros.

Este estudo propõe uma análise quantitativa e sistemática da degradação do material em processos PBF-LB/P, avaliando a efetividade do procedimento de ajuste de parâmetros utilizado no laboratório em comparação às recomendações baseadas em refreshment [3, 1]. A investigação combina dados históricos de produção com experimentos realizados sob condições controladas, buscando determinar se o método alternativo permite produzir peças dentro dos limites de tolerância estabelecidos pelo CTI.

Espera-se identificar correlações significativas entre o número de ciclos de reuso, os ajustes aplicados e as propriedades mecânicas resultantes, demonstrando que o controle paramétrico pode substituir de maneira previsível o refreshment. Essas evidências fundamentam o desenvolvimento futuro de um modelo matemático e, posteriormente, de um sistema baseado em inteligência artificial capaz de prever o grau de degradação do material e ajustar automaticamente as condições de processo, promovendo maior padronização e reprodutibilidade [4].

2. Métodos e Resultados Preliminares

O estudo foi conduzido em duas frentes complementares: uma análise histórica baseada nos registros de produção do Laboratório Aberto de Impressão 3D (LA-Print/CTI) e uma abordagem experimental controlada, destinada a investigar a influência dos principais parâmetros de processo sobre as propriedades mecânicas em sistemas de fusão em leito de pó por laser (PBF-LB/P) [5]. A Figura 1 sintetiza o fluxo geral do trabalho.

2.1. Etapa 1 – Abordagem histórica (base empírica)

Os registros de produção eram realizados ao longo do ciclo de construção de cada build, contendo o conjunto de peças fabricadas. Esses dados eram preenchidos em arquivos padrão no formato ".DOCX", utilizando o Microsoft Word. As informações incluíam parâmetros de máquina (temperatura do leito e dos alimentadores, potência do laser, altura do build, tamanho do arquivo e fator de escala), dados operacionais (data de início e fim, tempo total do processo e identificação da carga de material) e observações qualitativas sobre aparência e resistência percebida.

Com o objetivo de organizar esse histórico e torná-

lo utilizável para análise sistemática, desenvolveu-se uma ferramenta de aquisição e compilação capaz de extrair automaticamente esses registros e estruturá-los em um *DataFrame*. O processamento concentrou-se inicialmente nos arquivos ".DOCX", analisados via seu conteúdo XML. A partir da leitura das tabelas internas e do uso de palavras-chave associadas a cada parâmetro, foi possível identificar e extrair os valores usando expressões regulares, gerando um conjunto de dados em formato *tidy*.

2.2. Etapa 2 – Identificação de Variáveis Críticas

A análise exploratória dos dados — incluindo histogramas, correlações e gráficos de dispersão (Figura 2) — revelou padrões consistentes de ajuste empírico. À medida que o material acumulava tempo de uso, operadores aumentavam gradualmente a temperatura do leito e a potência do laser, buscando compensar a degradação percebida. Essa evidência, aliada ao conhecimento prévio do laboratório e à literatura [2], fundamentou a escolha dessas duas variáveis como foco da etapa experimental controlada.

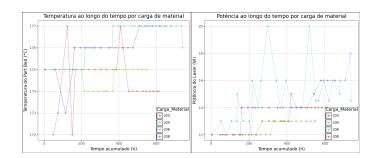


Figura 2: Análise exploratória dos registros históricos. (a) Evolução da temperatura do leito ao longo do tempo de uso das diferentes cargas de material. (b) Variação correspondente da potência do laser.

2.3. Etapa 3 – Abordagem experimental (build único controlado)

Com base nas tendências identificadas na etapa histórica, foi projetado um build experimental único contendo quatro zonas de temperatura (175–178 °C). Em cada zona, 20 corpos de prova do tipo I foram distribuídos em quatro grupos de potência (12, 14, 16 e 18 W), conforme especificado pela ASTM D638-22 (Figura 3). O objetivo foi isolar e avaliar a influência combinada desses parâmetros, utilizando uma carga de material já degradada (cerca de 800 h de uso), mantendo os demais parâmetros constantes.

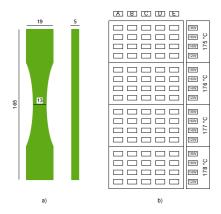


Figura 3: (a) Corpo de prova do tipo I conforme a norma ASTM D638-22, utilizado nos ensaios de tração. (b) Disposição dos corpos de prova no *build* experimental, mostrando as zonas de temperatura (175–178 °C) e as potências de laser aplicadas (12–18 W).

2.4. Etapa 4 - Ensaios de tração e extração de propriedades

Após a fabricação, os corpos de prova foram submetidos a ensaios de tração com aquisição de força e deslocamento. As curvas tensão—deformação resultantes foram analisadas por regressão local deslizante, permitindo identificar a região linear inicial com base no coeficiente de determinação (R^2) . A partir dela, obtevese o módulo de elasticidade (E) e a tensão máxima (σ_{max}) . A Figura 4 apresenta um exemplo típico dos resultados preliminares.

Figura 4: Curva típica de tensão—deformação obtida a partir dos ensaios de tração, destacando a região linear utilizada para o cálculo do módulo de elasticidade.

2.5. Etapa 5 – Modelagem e predição

As evidências empíricas e os resultados preliminares do experimento sugerem que a degradação do material pode ser parcialmente compensada por ajustes sistemáticos de temperatura e potência. A Figura 5 representa conceitualmente a diferença entre o ajuste empírico em degraus — observado no histórico — e a abordagem preditiva em desenvolvimento, baseada em correções graduais ao longo da degradação. Essa representação constitui o primeiro passo para o modelo preditivo que será desenvolvido em etapas futuras.

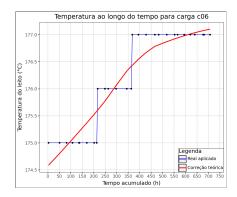


Figura 5: Representação esquemática comparando o ajuste empírico em degraus e a proposta de correção contínua preditiva dos parâmetros de processo.

3. Discussão

A aquisição e a análise exploratória dos dados históricos permitiram identificar o padrão de ajustes adotado no laboratório e mostraram que a organização desses registros em um dataframe estruturado funciona como ferramenta eficaz de preservação do conhecimento operacional. A conversão de arquivos DOCX em uma base com 182 processos organizados tornou mais clara a evolução dos parâmetros e dos resultados de produção, revelando tendências que não eram perceptíveis na documentação original.

O build experimental controlado possibilitou observar, de forma isolada, o efeito combinado da variação de temperatura e potência sobre as propriedades mecânicas. Mesmo em material já degradado, as curvas tensão—deformação apresentaram qualidade adequada para a identificação automática da região linear por regressão local, validando o método adotado para extração do módulo de elasticidade. A Figura 4 exemplifica essa análise e ilustra a consistência do procedimento, que se mostrou capaz de lidar com a variabilidade natural do processo e oferecer base confiável para comparações entre zonas de temperatura e faixas de potência.

A comparação entre as tendências observadas no experimento e os padrões identificados nos dados históricos reforça a hipótese central deste estudo: a degradação acumulada da Poliamida-12 ocorre de forma gradual e pode ser parcialmente compensada por ajus-

tes específicos nos parâmetros críticos de processo. A convergência entre as duas etapas — empírica e experimental — indica que o tempo de exposição térmica e seus efeitos podem funcionar como indicadores para estratégias de controle adaptativo.

Por fim, a Figura 5 sintetiza o primeiro passo em direção à modelagem, representando a diferença entre o ajuste empírico tradicional, realizado em degraus, e uma estratégia contínua baseada em predição. Essa formalização conceitual estabelece o ponto de partida para o desenvolvimento de um modelo matemático capaz de antecipar a necessidade de correção de parâmetros, contribuindo para a futura implementação de um sistema automatizado de controle no processo PBF-LB/P.

4. Impactos da Pesquisa

A pesquisa conduzida no LAPrint/CTI contribui diretamente para o avanço do controle de processos em manufatura aditiva por fusão em leito de pó, por laser, em polímero, especialmente em cenários onde o custo e a disponibilidade do material são fatores limitantes. A abordagem proposta — baseada na quantificação da degradação do pó e no ajuste dinâmico dos parâmetros de processo — amplia a vida útil das cargas de Poliamida-12 e favorece práticas mais sustentáveis ao reduzir desperdícios e custos operacionais.

Além do impacto econômico, o estudo estabelece uma base científica consistente para modelar o comportamento do material ao longo do uso, com potencial de aplicação em outras tecnologias de processamento de pós poliméricos. A integração entre dados históricos e experimentais delineia um caminho promissor para o desenvolvimento de modelos preditivos e sistemas de controle autônomo capazes de manter a qualidade das peças sem depender exclusivamente da experiência do operador. Em perspectiva mais ampla, os resultados abrem espaço para soluções baseadas em inteligência artificial, permitindo ajustar parâmetros em tempo real e fortalecendo a autonomia, a padronização e a confiabilidade da manufatura aditiva em ambiente industrial.

Øtrabalho apresentou o desenvolvimento de uma metodologia para análise e modelagem da degradação da Poliamida-12 em processos de fusão em leito de pó a laser, integrando dados históricos e experimentais. Mesmo em fase intermediária, os resultados obtidos demonstram a viabilidade do acompanhamento sistemático das propriedades mecânicas e dos parâmetros de processo, estabelecendo as bases para um futuro

modelo preditivo capaz de reduzir a dependência da intervenção do operador.

A pesquisa também contribui para práticas mais sustentáveis em manufatura aditiva, ao indicar que o reaproveitamento do material pode ser realizado de forma eficiente, sem a necessidade de mistura com pó virgem. As próximas etapas incluem a ampliação da base experimental, a avaliação de novas cargas em diferentes estágios de uso e a validação do modelo proposto, visando a implementação de um controle autônomo e inteligente do processo PBF-LB/P.

Agradecimentos

Agradecemos ao Laboratório Aberto de Impressão 3D (LAPrint) do Centro de Tecnologia da Informação Renato Archer pelo fornecimento do equipamento e do material utilizados nos experimentos, bem como pelo tempo e pelo conhecimento compartilhados pela equipe. Reconhecemos, ainda, o procedimento de reaproveitamento de materiais poliméricos proposto pelo saudoso Dr. Jorge Vicente, cuja contribuição inspirou o presente estudo. Agradecemos também à Fundação Oswaldo Cruz (Fiocruz) pelo apoio financeiro, por meio da bolsa concedida no âmbito da parceria institucional com o CTI Renato Archer.

Referências

- [1] N. Vail, D. Bourell, and J. Beaman, "Process parameter influence in selective laser sintering," *Rapid Prototyping Journal*, vol. 1, no. 1, pp. 36–44, 1994.
- [2] R. D. Goodridge, C. J. Tuck, and R. J. M. Hague, "On the reuse of polyamide 12 powder in laser sintering," Additive Manufacturing, vol. 1, pp. 145–150, 2012.
- [3] ASTM International, "ASTM D638-22: Standard Test Method for Tensile Properties of Plastics," West Conshohocken, PA, 2022, standard Specification. [Online]. Available: https://www.astm.org/d0638-22.html
- [4] G. Choren, V. Gervasi, and J. Beaman, "Experimental investigation of process parameters in sls of polymeric materials," *Rapid Prototyping Journal*, vol. 7, no. 5, pp. 305–312, 2001.
- [5] D. Drummer, K. Wudy, and M. Drexler, "Upgrading analytical models to predict the onset of degradation in selective laser sintering," *Thermochimica Acta*, vol. 689, pp. 178–188, 2020.