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Abstract

We revisit the mathematical formalism involved in the

application of Bloch’s theorem to non-Abelian gauge

theory.

In particular, we show how to map numerical

simulations performed on the “replicated” lattice to the

original (smaller) lattice, or “unit cell”.

Special emphasis is given to the rôle played by

boundary conditions.
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From Tereza’s Talk (I)

A new way of evaluating the lattice Landau-gauge gluon propagator D(p2):

• Consider a d-dimensional link configuration {Uµ(~x)} ∈ SU(Nc), defined on a lattice
Λx with volume V = Nd and periodic boundary conditions (PBC)

• Replicate this configuration m times along each direction, yielding an extended lattice
Λz with volume md V and PBC

• Indicate the points of Λz with ~z = ~x + ~yN, where ~x ∈ Λx and ~y is a point on the index
lattice Λy , with xµ = 1, 2, . . . ,N and yµ = 0, 1, . . . ,m − 1 so that zµ = 1, 2, . . . ,mN

• Consider, on the extended lattice, the gauge transformation Uµ(g;~z) = g(~z)Uµ(~z)

g(~z + êµ)† with

g(~z) = exp (i
d∑
µ=1

Θµzµ/N) h(~x)

• Here, h(~x) has periodicity N and Θµ are commuting matrices, i.e. they can be written
as Θµ =

∑Nc−1
a=1 λa

C θ
a
µ, where the λa

C matrices are Cartan generators

• Impose PBC for Λz , i.e. g(~z + mNêµ) = g(~z), which implies exp (im Θµ) = 1⊥

• Hence, the matrices Θµ have eigenvalues 2πnµ/m, where nµ is an integer
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From Tereza’s Talk (II)

• The usual minimizing functional

EU [g] =
< Tr

Nc d md V

d∑
µ=1

∑
~z∈Λz

[
1⊥ − Uµ(g;~z)

]

for the lattice Landau gauge condition becomes

EU [g] =
< Tr

Nc d md V

d∑
µ=1

∑
~z∈Λz

[
1⊥ − Uµ(h;~x) e−iΘµ/N

]
,

which is independent of ~y and we can write

EU [g] = EU,Θ[h] ≡
< Tr

Nc d

d∑
µ=1

 1⊥ −

 1
V

∑
~x∈Λx

Uµ(h;~x)

 e−iΘµ/N



• The numerical minimization can now be carried out on the original lattice Λx
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From Tereza’s Talk (III)

• The resulting gauge-fixed field configuration is transverse on Λz and it can be written
as

Uµ(g;~z) = Uµ(g;~x , ~y) = exp

i
d∑
ν=1

Θν yν

Uµ(h,Θ;~x) exp

−i
d∑
ν=1

Θν yν



• Hence, gauge-fixed configurations in different replicated lattices Λx (~y) differ only by
the global gauge transformation exp (i

∑d
ν=1 Θν yν)

• {Uµ(h,Θ;~x)} is also transverse on each replicated lattice Λx (~y), since it minimizes
EU,Θ[h]

• Evaluation of the gluon propagator D(p2) on the extended lattice Λz yields results in
agreement with the usual direct evaluation using a (large) lattice volume V = (mN)d

OPEN QUESTIONS:

• Is this just a coincidence?

• What’s the rôle of the {Uµ(h,Θ;~x)} “domains” and of the “color magnetization”?

• Is this telling us something about the relevant configurations for the QCD vacuum?
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Open Problems using Bloch Waves

• The gluon propagator D(p2) evaluated on the extended lattice Λz is null for
most of the lattice momenta p2

• The gluon propagator D(0) at zero momentum on the extended lattice is
strongly suppressed in the limit m→ +∞

• Does the result for D(p2) with p2 6= 0 depend on the number of replicas m?

• The new minimization problem is a mixed-integer non-linear optimization
problem minx, l f (x , l) with

f :
[
Rnr ×Zni

]
, x ∈ Ωr ⊂ Rnr , and l ∈ Ωi ⊂ Zni ,

where the subsets Ωr and Ωi are determined by the constraints imposed on
the real variables x and on the integer variables l

=⇒ several definitions of minima

• Can we relate Gribov copies in a large lattice volume V = (mN)d with those
obtained using Bloch waves in a volume V = Nd ×md ?
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Gluon Propagator “Spectrum” (I)
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∑d
µ=1 p2

µ have components pµ(~k) = 2 sin (πkµ/N),
where N is the lattice side and kµ = 0, 1, 2, . . . ,N/2

For V = 1283 there are ∼ 45000 different momenta (with degeneracy)

For V = 43 there are 7 different momenta (with degeneracy)
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Gluon Propagator “Spectrum” (II)
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For V = 1283 there are ∼ 45000 different momenta (with degeneracy)

For V = 83 there are 25 different momenta (with degeneracy)

September 2, 2024 QuantFunc24–Valencia 8 / 18



Gluon Propagator “Spectrum” (II)
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The Math of Bloch Waves (I)

In the SU(2) case we can write the Θµ matrices as

Θµ = θµ v† σ3 v ,

where v ∈ SU(2), θµ ∈ < and σ3 is the third Pauli matrix. Then, they have
eigenvectors

w1 = v†
(

1
0

)
and w2 = v†

(
0
1

)
with eigenvalues α(1)

µ = θµ and α(2)
µ = −θµ

In like manner, in the SU(3) case, which has rank two, we can write

Θµ = v† ( θµ,3 λ3 + θµ,8 λ8 ) v ,

with real parameters θµ,3 and θµ,8, v ∈ SU(3), and where λ3, λ8 are the two diag-
onal Gell-Mann matrices
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The Math of Bloch Waves (II)

With the above setup, we also have to impose the constraint

Θµ wj = α(j)
µ wj =

2πn(j)
µ

m
wj

so that

exp

(
−i

d∑
ν=1

Θν yν

)
wj = exp

(
−i

d∑
ν=1

2πn(j)
ν

m
yν

)
wj

In the SU(2) case this implies n(1)
µ = −n(2)

µ =
m θµ

2π

Then, it is natural to consider the basis λjk ≡ wj w†k = v†Mjk v , where the Nc × Nc

matrices Mjk have elements (Mjk )gh = δjgδkh, and write

Uµ(g;~z) = v†
{

Nc∑
h,j=1

[
Uµ(g;~z)

]
hj Mhj

}
v
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The Fourier Transform (I)

We can now evaluate the Fourier transform

Ũµ(g;~k) =
∑
~z∈Λz

Uµ(g;~z) exp

[
− 2πi

m N

(
~k · ~z

)]

of the gauge-fixed link variables Uµ(g;~z) and find

[
Ũµ(g;~k)

]
hj
≡ w†h Ũµ(g;~k) wj ∝

∑
~y∈Λy

exp

[
−2πi

m

d∑
ν=1

(
kν + n(j)

ν − n(h)
ν

)
yν
]

since ~z = ~x + ~yN

Thus, we find that [Ũµ(g;~k)]hj is zero unless the quantity kν+n(j)
ν −n(h)

ν is a multiple
of m for any direction ν and, in this case, the above sum is equal to md

NOTE: different matrix elements require different conditions!
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Thus, we find that [Ũµ(g;~k)]hj is zero unless the quantity kν+n(j)
ν −n(h)

ν is a multiple
of m for any direction ν and, in this case, the above sum is equal to md

NOTE: different matrix elements require different conditions!

September 2, 2024 QuantFunc24–Valencia 11 / 18



The Fourier Transform (II)

The same result applies to the Fourier transform of the gauge-fixed gluon field

Aµ(g;~z) ≡ 1
2 i

[
Uµ(g;~z)− U†µ(g;~z)

]
traceless

and to the gluon propagator

D(~k) =
Tr

2 (d − 1) (N2
c − 1) md V

d∑
µ=1

〈 Ãµ(g;~k) Ãµ(g;−~k) 〉

For SU(2) we need to consider three cases for the elements
[
Ãµ(g;~k)

]
hj

:

• Diagonal elements (h = j) require kν ∝ m

• Elements wit h = 1 and j = 2 require kν + n(2)
ν − n(1)

ν = kν − 2n(1)
ν ∝ m

• Elements wit h = 2 and j = 1 require kν + n(1)
ν − n(2)

ν = kν + 2n(1)
ν ∝ m

For the zero momentum we need n(j)
ν − n(h)

ν ∝ m, which usually implies h = j
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〈 Ãµ(g;~k) Ãµ(g;−~k) 〉

For SU(2) we need to consider three cases for the elements
[
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Results

• We verified that the only non-zero values of the gluon propagator D(p2),
evaluated using Bloch waves, satisfy the condition kν + n(j)

ν − n(h)
ν ∝ m for

any direction ν

• For these momenta, the gluon propagator becomes

D(~k) =
md Tr

2 (d − 1) (N2
c − 1) V

d∑
µ=1

〈 Ãµ(h,Θµ;~k) Ãµ(h,Θµ;−~k) 〉

• This explains the global factor md obtained in numerical simulations

• The zero-momentum gluon propagator becomes

D(~0) ≈ md

2 d (N2
c − 1) V

d∑
µ=1

Nc∑
j=1

〈

∑
~x∈Λx

Aµ(h; Θµ;~x)

2

jj

〉

and only the diagonal components of the zero modes usually gives a
contribution
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Our Old Explanation is Confirmed!

Question: why is D(0) so suppressed?

The extended gauge fixing is given by

exp [−2πi(v σ3 v†) nµzµ/(mN) ] = v† exp [−2πiσ3 nµzµ/(mN) ] v

in the SU(2) case

In the m→∞ limit, the discretized parameters nµ/(mN) become continuous

The maximization of (the real trace of) 1
V

∑
~x∈Λx

Uµ(h;~x)

 e−iΘµ/N =

 v

 1
V

∑
~x∈Λx

Uµ(h;~x)

 v†

 e−2πiσ3nµ/(mN) ,

with respect to nµ and v , tries to find a global rotation v that makes the zero modes
of the gauge configuration close to an Abelian (diagonal) configuration

Then we can remove the Abelian zero modes!
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The maximization of (the real trace of) 1
V

∑
~x∈Λx

Uµ(h;~x)

 e−iΘµ/N =

 v

 1
V

∑
~x∈Λx

Uµ(h;~x)

 v†

 e−2πiσ3nµ/(mN) ,

with respect to nµ and v , tries to find a global rotation v that makes the zero modes
of the gauge configuration close to an Abelian (diagonal) configuration

Then we can remove the Abelian zero modes!
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The m → ∞ Limit

SU(2) Gluon propagator
at zero momentum D(0),
in the two-dimensional
case, as a function of
the inverse lattice side
1/(mN) with N = 320
and m = 2, 4, 8 and 16
at β = 10.0. The fit is
∼ 1/(mN)1.5.
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New Boundary Conditions for the “Unit Cell”

The gauge-fixed link variables Uµ(h,Θν ;~x) in the “unit cell” are not periodic

However, they satisfy the boundary conditions

Uµ(h,Θµ;~x + Nêµ) = exp (iΘµ) Uµ(h,Θµ;~x) exp (−iΘµ)

If we expand the link variable in terms of the λhj matrices, their components satisfy
the toroidal boundary conditions[

Uµ(h,Θµ;~x + Nêν)
]

hj = e2πi[n(h)
µ −n(j)

µ ]/m [Uµ(h,Θµ;~x)
]

hj

Clearly, we expect
EU [g] = EU [h,Θµ] ≤ EU [h]

It seems very difficult to relate Gribov copies in the “unit cell” with those obtained
by gauge fixing a configuration that is directly thermalized on the extended lattice
Λz
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Uµ(h,Θµ;~x + Nêµ) = exp (iΘµ) Uµ(h,Θµ;~x) exp (−iΘµ)

If we expand the link variable in terms of the λhj matrices, their components satisfy
the toroidal boundary conditions[

Uµ(h,Θµ;~x + Nêν)
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Conclusions

• We now completely understand the math behind the use of
Bloch waves in minimal Landau gauge

• We can perform the whole simulation (thermalization, gauge
fixing, evaluation of the gluon propagator) in the small “unit
cell”

• This should allow us to produce large ensembles of data for
the IR gluon propagator, even when we consider small unit
cells and large values of m

• This can give us some hints about the rôle of the {Uµ(h,Θ;~x)}
“domains” and of the “magnetization”

• We probably need to move part of the simulation to GPUs

• We also plan to extend this analysis to the ghost propagator
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THANKS!
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