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(1+1)D QCA for Quantum Electrodynamics (QED)

Introduction:
» Relativistic quantum simulation used for digital.

» Infinitely repeating quantum circuit simulating QED.

Description, 3 steps: NGNS NGy
» Unitary evolution
= W' gate (-X-X-h>t+e
> U(1) gauge symme.try U’ W ;
= gauge field on links

: . TN D
= green wiggly wires WA A SY A
> 1-particle sector 5 5
= Dirac Quantum Walk 7 SN/ 5S\/ 5\
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Dirac QW in (1+1)D

P The state of (1+1)D QCA for QED at any time t in 1-particle sector is
[9() = D [t (x 1) [x+) + 97 (x, £) [x )], (1)

where |x+) , [x—) are position eigenvectors with positive

and negative chirality respectively.

P After one step application of W, we obtain the evolution equations below

T (x, t +€) = cos (me) T (x — ¢, t) — isin(me)p~(x,t)

P (x, t+€) = cos (me) ™ (x + ¢, t) — isin(me) YT (x, t).

()

P> Fermions move wrt. their chiral charges, fermions with positive chirality

move to right and fermions with negative chirality move to left.

P Fermions move in the speed of light with the probability of cos? (me),

or they stay with the probability of sin® (me)

P Notice that evolution equations are unitary and strictly local
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Fermion-Doubling in Lattice Gauge Theories (LGT)
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Figure: Energy momentum modes that contribute to G g7 in the continuum limit
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Fermion-Doubling Problem in the (1+1)D QED QCA

/e .
Gocal(n, m),(k,l)):é/ dEdp ic(—E(m-1)+p(n—k)

—/e (271’)2
1 e'f€ — cos (me)eiPe —isin (me) (4)
D1(E, p) —isin (me) e’E¢ — cos (me)ePe ) -
Di(E, p) = 1+ e 2Ec _ 2677E¢ cos (pe) cos (me). (5)

And it has a problematic 4-times degenerate symmetry:
Di(E+tm/e,p£tn/e) = —D1(E, p). (6)
Because for Ee and pe small, in the limit ¢ — 0, all 5 solutions are:

o« Di(E,p) = (E? - p* —m?) + ... (7)

Conclusion:
Again, contribution of high-frequency modes to, the.continuum.
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Solution for the (1+1)D QED QCA: Momentum Space
E

E

Figure: On the left, symmetries of D;(E, p) due to its periodicity (which

imply a contribution of high-frequency neighborhoods to the continuum
limit). On the right, proposal of our two-layer solution.
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Solution for the (1+1)D QED QCA: Real Space
Two layers in the Brillouin zone
= two sublattices in real/direct space:
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Figure: Ff U F%

»  Due to Poincare-Hopf theorem, total chiral charges of red and blue
fermions are zero separately.

P We simulate Dirac particles in QCA for QED, but this solution of fermion
doubling allows us to consider Weyl particles through the flavour interaction.

7/10



Fermion-Doubling Problem for the (3+1)D QED QCA
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Figure: Degenerate lattice solutions of continuum-limit physics in (3+1)D

QED QCA
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Solution for the (3+1)D QED QCA (Momentum Space)

E

Px, Py, Pz

S ¥ ¥ S,

Figure: On the left, symmetries of D3(E, px, py, p;) due to its
periodicity (which imply a contribution of high-frequency neighborhoods
to the continuum limit, represented on the hyperplanes, E — p., E — py,
E — p;). On the right, proposal of our eight-layer solution.
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Advantages of QCA over LGT

» QCA has less problematic fermion doubling, number of
flavours needed is 2971, whereas in LGT number of needed
flavours is 2¢.

» The solution of fermion doubling in QCA does not break
chirality unlike the techniques used in LGT.

» Existence of Weyl particles in QCA can be done via
interactions of sub-lattices.

» QCA has unitary evolution operator unlike (141) dimensional
LGTs.
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