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Color Confinement & Bloch Waves

How does color confinement emerge from QCD?

⇒ Gribov-Zwanziger confinement scenario relates low-energy

(long-distance) properties of the theory to the infrared behavior of

its gluon and ghost propagators (which are gauge-dependent)

One is thus led to consider gauge-fixed quantities (also on the lattice)

⇒ gauge-fixing is equivalent to a spin-glass problem (...)

Studies of Landau gauge propagators showed the need for very large

volumes (much larger lattices than usual simulations → why?)

High computational cost BUT: infinite-volume limit as periodic-potential

problem (by “cloning” the gauge configuration), simplified by analogy

with Bloch’s theorem ⇒ physical insight as well as technical tool?
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Gluon Propagator and Confinement

Green’s functions contain all info of a QFT’s physical/mathematical

structure ⇒ Gluon propagator (two-point function) as the most basic

quantity of QCD.
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structure ⇒ Gluon propagator (two-point function) as the most basic
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Gluon Propagator and Confinement

Green’s functions contain all info of a QFT’s physical/mathematical

structure ⇒ Gluon propagator (two-point function) as the most basic

quantity of QCD. Confinement given by behavior at small momenta

⇒ nonperturbative study of IR gluon propagator

In Landau gauge Dab
µν(p) =

∑

x

e−2iπk·x〈Aa
µ(x)A

b
ν(0)〉

= δab
(

gµν −
pµ pν
p2

)

D(p2)

Gribov-Zwanziger scenario predicts D(p2) suppressed in the IR limit,

in particular D(0) = 0 (maximal violation of reflection positivity)

Circa 2008: Yes, but not really

Now (2024): Gluon propagator, Quo Vadis?
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Gluon Propagator at “Infinite” Volume

Attilio Cucchieri & T.M. (2008)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2

D
(p

2 )

p

4D Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6
D

(p
2 )

p

3D Results

Gluon propagator D(p2) as a function of the lattice momenta p (both in physical units)

for the pure-SU(2) case in d = 4 (left), for volumes of up to 1284 (lattice extent ∼ 27

fm) and d = 3 (right), for volumes of up to 3203 (lattice extent ∼ 85 fm)
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Gluon Propagator: Volume Effects

Gluon propagator vs. lattice momentum for V = 203, 403, 603 and 1403
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How are the data obtained?

The Lattice

1) Quantization by path integrals ⇒ configurations with “weight” ei S/~

2) Euclidean formulation (imaginary time) ⇒ weight becomes e−S/~

3) Discrete space-time ⇒ UV cut at p ∼
< 1/a ⇒ regularization

Also: finite-size lattices ⇒ IR cut for small momenta p ≈ 1/L
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How are the data obtained?

The Lattice

1) Quantization by path integrals ⇒ configurations with “weight” ei S/~

2) Euclidean formulation (imaginary time) ⇒ weight becomes e−S/~

3) Discrete space-time ⇒ UV cut at p ∼
< 1/a ⇒ regularization

Also: finite-size lattices ⇒ IR cut for small momenta p ≈ 1/L

The Wilson action (1974)

S = −
β

3

∑

�

ReTrU� , β = 6/g0
2

⇒ lattice parameter β is related to a, plaquettes U�

are oriented products of the gauge-link variables

Uµ(x), which are SU(3) group elements

Uµ(x) ≡ eig0aA
b
µ(x)Tb
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How are the data obtained?

The Lattice

1) Quantization by path integrals ⇒ configurations with “weight” ei S/~

2) Euclidean formulation (imaginary time) ⇒ weight becomes e−S/~

3) Discrete space-time ⇒ UV cut at p ∼
< 1/a ⇒ regularization

Also: finite-size lattices ⇒ IR cut for small momenta p ≈ 1/L

The Wilson action (1974)

S = −
β

3

∑

�

ReTrU� , β = 6/g0
2

⇒ lattice parameter β is related to a, plaquettes U�

are oriented products of the gauge-link variables

Uµ(x), which are SU(3) group elements

Uµ(x) ≡ eig0aA
b
µ(x)Tb

Gauge transformation: Uµ(x) → Ug
µ(x) = g(x)Uµ(x) g

†(x+ µ)

⇒ closed loops are gauge-invariant quantities (S is gauge-invariant)

QuantFunc24 Valencia, Semptember 2024



Lattice Landau Gauge

Landau gauge is imposed on the lattice by minimizing the functional

E [U ; g] = ℜTr
∑

x,µ

[1 − Ug
µ(x)]

with respect to g(x) ∈ SU(Nc) for a fixed gauge configuration Uµ(x)
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Lattice Landau Gauge

Landau gauge is imposed on the lattice by minimizing the functional

E [U ; g] = ℜTr
∑

x,µ

[1 − Ug
µ(x)]

with respect to g(x) ∈ SU(Nc) for a fixed gauge configuration Uµ(x)

Taking g(x) = eiτγ(x) with γ(x) = γb(x)Tb ∈ su(Nc) fixed and τ → 0

E[U ; g] ≈ E[U ; 1⊥] + τ E ′[U ; 1⊥](b, x) γb(x) + (τ2/2) γb(x) E ′′[U ; 1⊥](b, x; c, y) γc(y)

⇒ E ′′[U ;1] = M[A] is a lattice discretization of Faddeev-Popov operator −D · ∂
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Lattice Landau Gauge

Landau gauge is imposed on the lattice by minimizing the functional

E [U ; g] = ℜTr
∑

x,µ

[1 − Ug
µ(x)]

with respect to g(x) ∈ SU(Nc) for a fixed gauge configuration Uµ(x)

Taking g(x) = eiτγ(x) with γ(x) = γb(x)Tb ∈ su(Nc) fixed and τ → 0

E[U ; g] ≈ E[U ; 1⊥] + τ E ′[U ; 1⊥](b, x) γb(x) + (τ2/2) γb(x) E ′′[U ; 1⊥](b, x; c, y) γc(y)

⇒ E ′′[U ;1] = M[A] is a lattice discretization of Faddeev-Popov operator −D · ∂

At any local minimum (stationary solution) we have E ′ = 0 ∀ γb(x)

⇒
(

∇ ·Ab
)

(x) = 0 ∀x, b , where Aµ(~x) =
1

2 i

[

Uµ(~x)− U †
µ(~x)

]

traceless

Therefore, the (minimal) Landau gauge condition on the lattice reads

(

∇ ·Ab
)

(~x) =

d
∑

µ=1

Ab
µ(~x)−Ab

µ(~x− êµ) = 0
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Gauge-Related Lattice Features

Gauge action written in terms of oriented plaquettes formed

by the link variables Ux,µ, which are group elements

under gauge transformations: Ux,µ → g(x)Ux,µ g
†(x+ µ),

where g ∈ SU(3) ⇒ closed loops are gauge-invariant

integration volume is finite: no need for gauge-fixing

when gauge fixing, procedure is incorporated in the

simulation, no need to consider Faddeev-Popov matrix

get FP matrix without considering ghost fields explicitly

Lattice momenta given by p̂µ = 2 sin (π kµ/N) with

kµ = 0, 1, . . . , N/2 ⇔ pmin ∼ 2π/(aN) = 2π/L, pmax = 4/a

in physical units
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3-Step Code

main() {

/* set parameters: beta, number of configurations NC,

number of thermalization sweeps NT */

read_parameters();

/* {U} is the link configuration */

set_initial_configuration(U);

/* cycle over NC configurations */

for (int c=0; c < NC; c++) {

thermalize(U,beta,NT);

gauge_fix(U,g);

evaluate_propagators(U[g]);

}

}

Algorithms: Heat-Bath and Micro-canonical (thermalization),

overrelaxation and simulated annealing (gauge fixing), conjugate

gradient and Fourier transform (propagators, etc.).
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Large Lattices via Bloch’s Theorem

Perform thermalization step on small lattice, then replicate it and use

Bloch’s theorem from condensed-matter physics to obtain gauge-fixing

step for much larger lattice (A. Cucchieri, TM, PRL 2017)

N=4, m=3

−1.0

−0.5

0.0

0.5

1.0
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Two-step Infinite-Volume Limit

Zwanziger suggests (NPB 1994) taking the infinite-volume limit

in two steps

1) first, considering the V → +∞ limit for the gauge

transformation g(x)

2) then, taking the same limit for the gluon field [i.e. the link

variables {Uµ(x)}]

How can one do that in practice?
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Two-step Infinite-Volume Limit

Zwanziger suggests (NPB 1994) taking the infinite-volume limit

in two steps

1) first, considering the V → +∞ limit for the gauge

transformation g(x)

2) then, taking the same limit for the gluon field [i.e. the link

variables {Uµ(x)}]

How can one do that in practice?

Let us build the two-step limit directly from the link configuration,

by “cloning” it to generate a bigger (extended) lattice(!!)

⇒ g(x) sees infinite volume while the one for Uµ(x) is still finite
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The Extended Lattice

Setup:

1. Consider a d-dimensional link configuration {Uµ(~x)} ∈

SU(Nc), defined on a lattice Λx with volume V = Nd and

periodic boundary conditions (PBC)

2. Replicate this configuration m times along each direc-

tion, yielding an extended lattice Λz with volumemd V and

PBC

3. Indicate the points of Λz with ~z = ~x + ~yN , where ~x ∈ Λx

and ~y is a point on the index lattice Λy

4. By construction, {Uµ(~z)} in Λz is invariant under transla-

tions by N (in any direction)
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The Extended Gauge Transformation

Impose the minimal-Landau-gauge condition on Λz, i.e. consider the

minimizing functional

EU [g] = −
ℜ Tr

dNcmdV

d
∑

µ=1

∑

~z∈Λz

g(~z)Uµ(~z) g(~z + êµ)
†

where g(~z) has periodicity mN , i.e. g(~z +mNêµ) = g(~z) (PBC in Λz)

The two limits: first take m→ +∞ and then N → +∞
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Bloch’s Theorem (I)

For an ideal crystalline solid in d dimensions, one considers an

electrostatic potential U(~r) with the periodicity of the Bravais

lattice, i.e. U(~r) = U(~r + ~R) for any vector ~R = N~aµ.

Ingredients:
1. The Hamiltonian H for a single electron is invariant under

translations by ~R

2. Translation operators T (~R) commute, i.e.

T (~R) T (~R
′

) = T (~R
′

) T (~R) = T (~R+ ~R
′

)

3. We can choose the eigenstates ψ(~r) of H to be also

eigenstates of T (~R)
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Bloch’s Theorem (II)

4. The eigenvalues c(~R) of T (~R) are exp (i~k · ~R) =

exp (2πi kν nν), where ~k = kν~bν is a vector of the re-

ciprocal lattice (i.e. ~aµ ·~bν = 2πδµν)

5. Since

T (~R)ψ(~r) = ψ(~r + ~R) = exp (i~k · ~R)ψ(~r) ,

the eigenstates ψ(~r) can be written as Bloch waves

ψ~k(~r) = exp (i~k · ~r)h~k(~r) ,

where the functions h~k(~r) have the periodicity of the

Bravais lattice, i.e. h~k(~r +
~R) = h~k(~r)
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Analogy with Gauge Transformation

Correspondence:

1. Λy ⇐⇒ finite Bravais lattice with PBC

2. {Uµ(~z)} ⇐⇒ periodic electrostatic potential U(~r)

One can prove that:

g(~z) can be written as g(~z) = exp (iΘµ zµ/N)h(~z)

h(~z) has periodicity N , i.e. h(~z +Nêµ) = h(~z) ⇒ h(~x)

The matrices Θµ = θaµλ
a
C (with a = 1, . . . , Nc − 1) have

eigenvalues 2πnµ/m, with nµ ∈ Z

The matrices λaC are elements of a Cartan sub-algebra of

the SU(Nc) Lie algebra
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The New Minimizing Functional

Due to the expression for g(~z) and to the cyclicity of the trace,

the minimizing functional becomes

EU [h,Θµ] = −
ℜ Tr

dNc V

d
∑

µ=1

e−iΘµ/N Qµ

where

Qµ =
∑

~x∈Λx

h(~x)Uµ(~x)h(~x+ êµ)
†

i.e. the numerical minimization may still carried out on the

original lattice Λx and used to write the solution for the extended

lattice, as for the case of Bloch waves

⇒ More on this later
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The Proof: Ingredients (I)

1. The original minimizing problem is invariant under trans-

lations T (Nêµ)

2. Due to the cyclicity of the trace, the minimizing functional

EU [g] is invariant under global (left) gauge transforma-

tions, i.e. g(~z) → v g(~z), with v ∈ SU(Nc)

3. If the sought gauge transformation {g(~z)} is unique, then

g(~z) and g(~z + Nêµ) can differ only by a global transfor-

mation, i.e.

T (Nêµ) g(~z) = g(~z +Nêµ) = vµ g(~z) ,

where vµ ∈ SU(Nc) is a ~z-independent matrix
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The Proof: Ingredients (II)

4. Since the translation operators commute, the vµ matri-

ces are commuting matrices, i.e. they can be written as

exp (iΘµ) = exp (iθaµλ
a
C), where the λaC matrices are Car-

tan generators

5. Then

g(~z + ~yN) = T (N~y) g(~z) = exp (iΘµyµ) g(~z)

and the proof is complete if we define

g(~z) ≡ exp (iΘµzµ/N)h(~x)

6. Due to the PBC for Λz, we need to impose the condition

[ exp (iΘµ) ]
m = 1 =⇒ the eigenvalues of the matrices Θµ

are of the type 2πnµ/m, with nµ ∈ Z
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Numerical Simulations

In the SU(Nc) case:

1. generate a thermalized d-dimensional link configuration

Uµ(x) with periodicity N , i.e. V = Nd with PBC

2. minimize EU [h,Θµ] with respect to h(x) and Θµ using two

alternating steps:

a) the matrices Θµ are kept fixed and one updates the

matrices h(~x) by sweeping through the lattice

b) the matrices Qµ are kept fixed and one minimizes

EU [h,Θµ] with respect to the matrices Θµ, belonging

to the corresponding Cartan sub-algebra

3. evaluate the gluon propagator using the extended gauge-

fixed link variables U
(g)
µ (~z) = g(~z)Uµ(~z) g(~z + êµ)

†
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The SU(2) Case

In the SU(2) case (one-dimensional Cartan sub-algebra)

we can write

Θµ ≡ (v†σ3v)αµ

with v ∈ SU(2) and eigenvalues ±αµ = ±2πnµ/m

Then, in the new minimizing functional

exp (−iΘµ/N) = v† exp[−2πiσ3nµ/(mN)] v

Also, the matrices Qµ are proportional to SU(2) matrices
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Results: 3D Gluon Propagator

The gluon propagator D(p2) as a function of the lattice momentum p at β = 3.0

for the Λx lattice volumes V = 323 (+) and 2563 (∗) and for the Λz lattice volume

V = 323 × 83 = 2563 (�)
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Back to the Minimizing Problem

As mentioned earlier, the minimizing problem is simplified as a

consequence of g(~z) = exp (iΘµzµ/N)h(~x), since the solution for the

extended-lattice problem is obtained from minimizing a similar

functional on the small one
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Back to the Minimizing Problem

As mentioned earlier, the minimizing problem is simplified as a

consequence of g(~z) = exp (iΘµzµ/N)h(~x), since the solution for the

extended-lattice problem is obtained from minimizing a similar

functional on the small one

For the gauge-transformed link variable Ug
µ(z) we have

Uµ(g; ~z) = eiΘνzν/N Uµ(h; ~x) e
−iΘµ/N e−iΘνzν/N

= eiΘνyν

[

eiΘνxν/N Uµ(h; ~x) e
−iΘµ/N e−iΘνxν/N

]

e−iΘνyν

where we used that ~z = ~x+ ~y ~N
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Back to the Minimizing Problem

As mentioned earlier, the minimizing problem is simplified as a

consequence of g(~z) = exp (iΘµzµ/N)h(~x), since the solution for the

extended-lattice problem is obtained from minimizing a similar

functional on the small one

For the gauge-transformed link variable Ug
µ(z) we have

Uµ(g; ~z) = eiΘνzν/N Uµ(h; ~x) e
−iΘµ/N e−iΘνzν/N

= eiΘνyν

[

eiΘνxν/N Uµ(h; ~x) e
−iΘµ/N e−iΘνxν/N

]

e−iΘνyν

where we used that ~z = ~x+ ~y ~N

Note that the central (local) part of the above expression is the same

for all “cells” and that different domains (=cells) are related by a global

“rotation” (determined by ~y), applied to each cell
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Gauge-Configuration Domains

The local part of Ug
µ(z) is gauge-fixed (i.e. transverse) but is no longer

periodic, while the original gauge configuration Uµ(z) was periodic, but

not transverse
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Gauge-Configuration Domains

The local part of Ug
µ(z) is gauge-fixed (i.e. transverse) but is no longer

periodic, while the original gauge configuration Uµ(z) was periodic, but

not transverse

Gauge-field configurations within cells are rotated, transformed by

global group elements defined by the cell index ~y, in a manner

reminiscent of Escher’s work (Metamorphosis I, II, III), so that the full

configuration on the extended lattice has the required m×N periodicity

A pattern of domains emerges!
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Color Magnetization

One can define a (gluon-field) color magnetization

Ab
µ =

1

Nd

∑

~x

Ab
µ(~x)

which is related to the gluon propagator at zero momentum as

D(0) =
Nd

d(N2
c − 1)

∑

b,µ

〈|Ab
µ|

2〉

Quantity A =
∑

b,µ〈|A
b
µ|〉/d(N

2
c − 1) considered by Zwanziger (in

Landau gauge, this should vanish at least as fast as 1/N ).
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Color Magnetization

One can define a (gluon-field) color magnetization

Ab
µ =

1

Nd

∑

~x

Ab
µ(~x)

which is related to the gluon propagator at zero momentum as

D(0) =
Nd

d(N2
c − 1)

∑

b,µ

〈|Ab
µ|

2〉

Quantity A =
∑

b,µ〈|A
b
µ|〉/d(N

2
c − 1) considered by Zwanziger (in

Landau gauge, this should vanish at least as fast as 1/N ).

⇒ Let us look for the average color magnetization in each cell and try

to relate it to the domains mentioned above
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Average Cell Magnetization
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Average Cell Magnetization
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Average color “magnetization” in each cell

M c
µ(~y) =

1

Nd

∑

~x

Ac
µ(~z)

for the pure-SU(2) case and lattice volume V = (60× 4)3

A new type of domain wall?
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Conclusions

Numerical results (in the gluon sector) obtained using large

lattice volumes can also be obtained using small lattice

volumes with extended gauge transformations

From the physical point of view:

1. the information encoded in a thermalized configuration

does not depend much on the lattice volume V

2. the properties of the Landau-gauge Green’s functions are

essentially set by the gauge-fixing procedure and the size

of V matters!

Limitation: the allowed momenta seem to be fixed by the

lattice discretization on the original lattice Λx, no way to obtain

“big-volume” momenta? ⇒ see Attilio’s talk

Interesting properties regarding “magnetization” domains!
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