# The complex structure of the Quark propagator with the spectral DSE

Jonas Wessely

Heidelberg University

QuantFunc2024 - Valencia



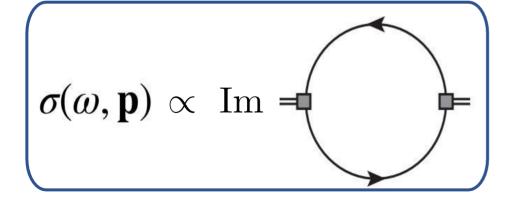
In collaboration with Jan M. Pawlowski



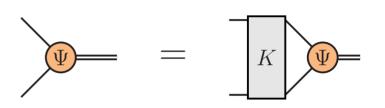
#### Real time correlators with spectral functional methods

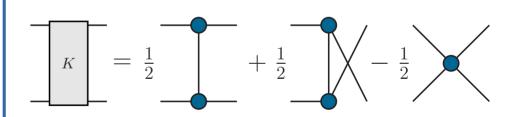
Transport coefficients

$$\mathcal{D}_{s} = \lim_{\omega \to 0} \frac{\sigma(\omega, \overline{p} = 0)}{\omega \chi_{a} \pi}$$



Bound states







**Need for real time correlation functions** 

#### The Quark spectral function



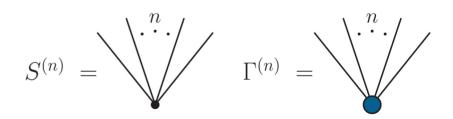
#### Need 2 input correlator

- Gluon Propagator
  - Get from reconstructed Spectral function

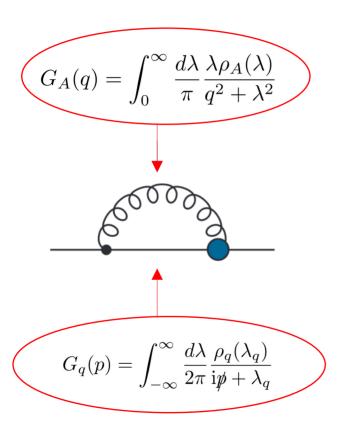
- Quark-Gluon Vertex
  - STI-Based causal construction

#### Notation

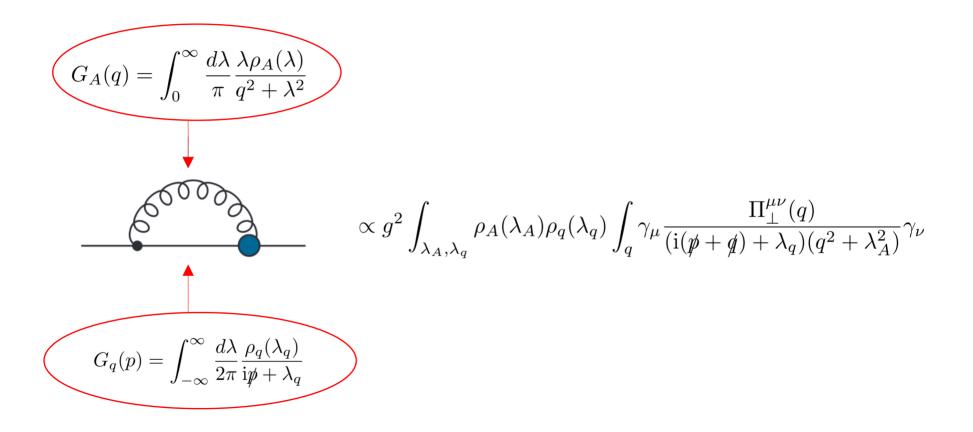
$$G_q =$$
  $G_A =$   $000000$ 



#### The spectral gap equation



#### The Quark spectral function



#### The Quark spectral function

$$G_{A}(q) = \int_{0}^{\infty} \frac{d\lambda}{\pi} \frac{\lambda \rho_{A}(\lambda)}{q^{2} + \lambda^{2}} \propto g$$

$$G_{q}(p) = \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} \frac{\rho_{q}(\lambda_{q})}{i \not p + \lambda_{q}}$$

- Loop integrals can be calculated in dimReg
- Access to the full complex plane

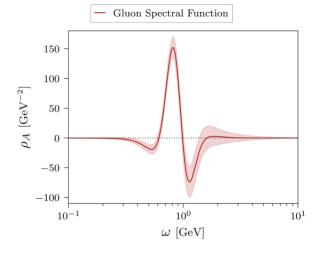
$$\propto g^2 \int_{\lambda_A,\lambda_q} \rho_A(\lambda_A) \rho_q(\lambda_q) \int_q \gamma_\mu \frac{\Pi_\perp^{\mu\nu}(q)}{(\mathrm{i}(\not p + \not q) + \lambda_q)(q^2 + \lambda_A^2)} \gamma_\nu$$

- But: additional (numerical) spectral integrals
- Spectral renormalisation for diverging diagrams

Horak, Pawlowski, Wink PRD 102 (2020) 125016

Horak, Pawlowski, Wink SciPost Phys. 15, 149 (2023)

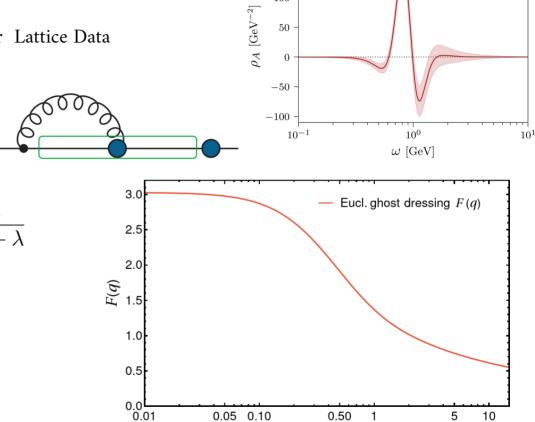
• Gluon Propagator: Reconstruction on (2+1) flavour Lattice Data



- Gluon Propagator: Reconstruction on (2+1) flavour Lattice Data
- Quark-gluon vertex: (spectral) STI construction

$$G_q(p+k)\Gamma^{\mu}_{\bar{q}qA}(p+k,p)G_q(p)$$

$$=g_s F(k^2) t^a \int_{\lambda} \rho(\lambda) \frac{1}{\mathrm{i}(\not p + \not q) + \lambda} (-\mathrm{i}\gamma^{\mu}) \frac{1}{\mathrm{i}\not p + \lambda}$$



150

100

50

Horak et al PRD 105 (2022), 3, 036014

Gluon Spectral Function

Horak, Papavassiliou, Pawlowski, Wink PRD 104 (2021), 074017

q [GeV]

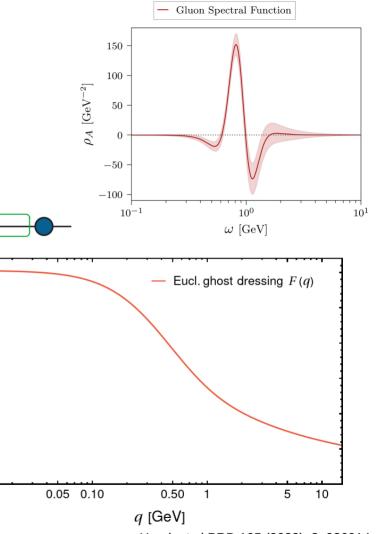
- Gluon Propagator: Reconstruction on (2+1) flavour Lattice Data
- Quark-gluon vertex: (spectral) STI construction

$$G_q(p+k)\Gamma^{\mu}_{\bar{q}qA}(p+k,p)G_q(p)$$

$$= g_s F(k^2) t^a \int_{\lambda} \rho(\lambda) \frac{1}{\mathrm{i}(\not p + \not q) + \lambda} (-\mathrm{i}\gamma^{\mu}) \frac{1}{\mathrm{i}\not p + \lambda}$$

- For abelian versions (without ghostdressing) see
   Delbourgo, West J.Phys. A: Math. Gen. 10 1049 (1977)
   Jia, Pennington PRD 96 (2017) 3, 036021
- Or even simpler: (spectral) rainbow ladder:

$$\Gamma^{\mu}_{\bar{q}qA}(p+k,p) = g_s F(k^2) t^a \gamma^{\mu}$$



2.5

1.0

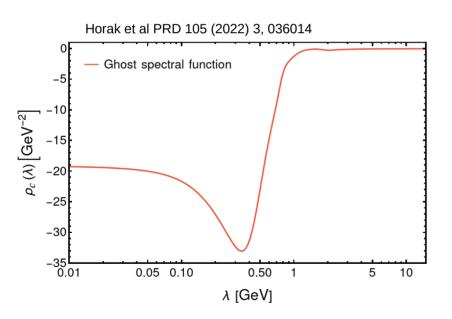
0.5

0.0

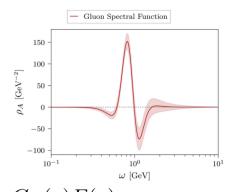
Horak et al PRD 105 (2022), 3, 036014

Horak, Papavassiliou, Pawlowski, Wink PRD 104 (2021), 074017

• Gluon and Ghost Propagator: Reconstruction on (2+1) flavour Lattice Data

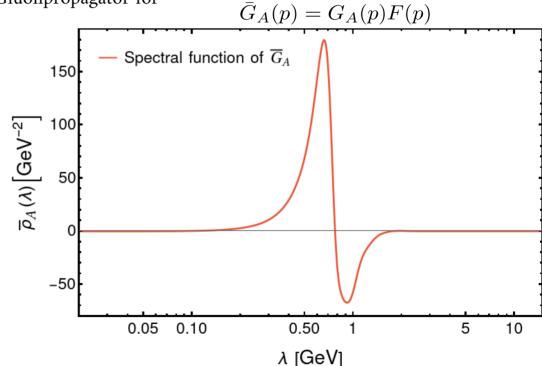


• Gluon and Ghost Propagator: Reconstruction on (2+1) flavour Lattice Data



• In both Vertexmodels: Absorb Ghostdressing in Gluonpropagator for

combined spectral representation Horak et al PRD 105 (2022) 3, 036014 Ghost spectral function  $\rho_{c}\left(\lambda\right)\left[\mathrm{GeV}^{-2}\right]$ -30 -35**└** 0.01 0.05 0.10 0.50 5 10 λ [GeV]



#### Chiral Symmetry breaking and the quark spectral Function 1

Simple model: need to enhance coupling to trigger "enough"  $D_{\gamma}SB$ 

$$\alpha_s(p) = \frac{1}{4\pi} \frac{(\lambda^{(1)}(p))^2}{Z_A(p)Z_q(p)^2}$$
2.5
$$-\alpha_s/\alpha_s^0 = 1.343$$

$$-\alpha_s/\alpha_s^0 = 2.199$$

$$-\alpha_s/\alpha_s^0 = 2.443$$

$$0.5$$

$$0.0$$

$$0.01$$

$$0.05$$

$$0.10$$

$$0.50$$

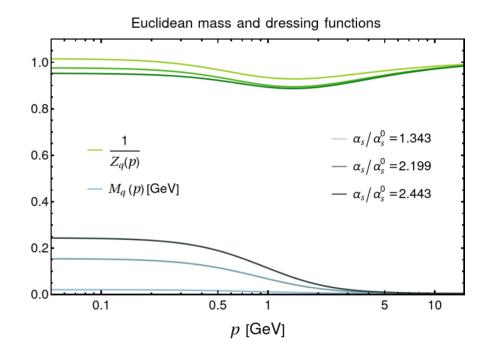
$$0.50$$

$$0.60$$

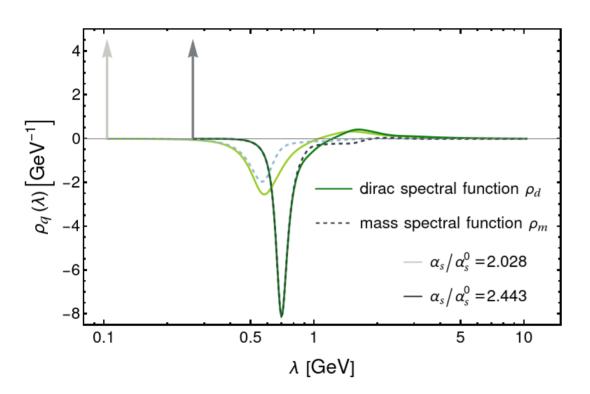
$$0.60$$

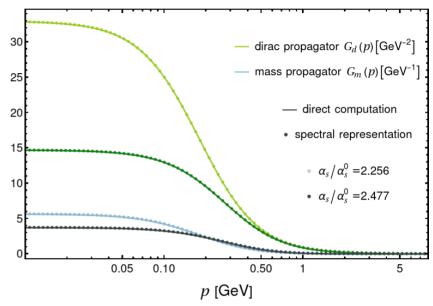
$$0.60$$

Here:  $m_l$ =2.7 MeV,  $\alpha_s^0(\mu$ =15GeV)=0.235



# Chiral Symmetry breaking and the quark spectral Function 2

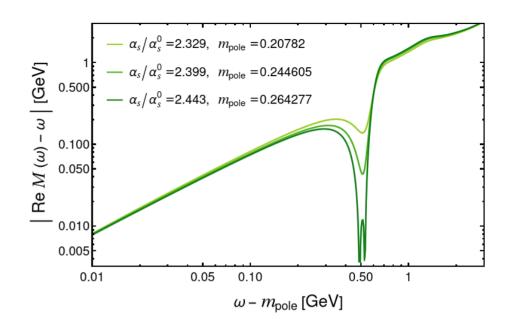




- Real pole at the edge of scattering continuum
- Spectral representation fullfilled withhin numerical accuracy

#### $D_{\chi}SB$ and CC-poles

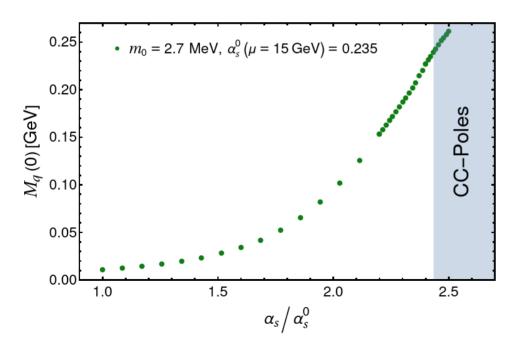
- For large enhancements, analytic structure changes qualitatively
- In addition to the real pole, 2 pairs of CC-poles emerge

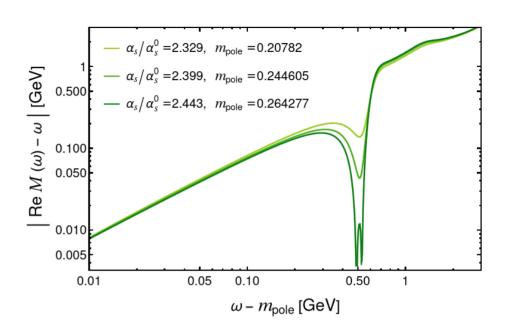


• Pole-structure determined by 0-crossings of the realpart of the inverse "universal" part of the quark propagator  $g(\omega) = \frac{1}{M(\omega)^2 - \omega^2}$ 

#### $D_{\chi}SB$ and CC-poles

- For large enhancements, analytic structure changes qualitatively
- In addition to the real pole, 2 pairs of CC-poles emerge

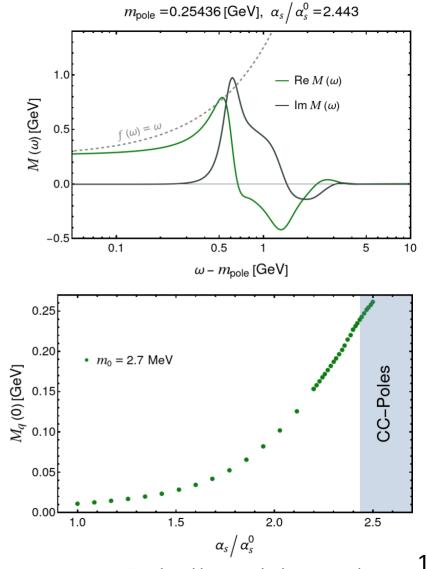




• Pole-structure determined by 0-crossings of the realpart of the inverse "universal" part of the quark propagator  $g(\omega) = \frac{1}{M(\omega)^2 - \omega^2}$ 

# $DB_{\chi}S$ and CC-poles

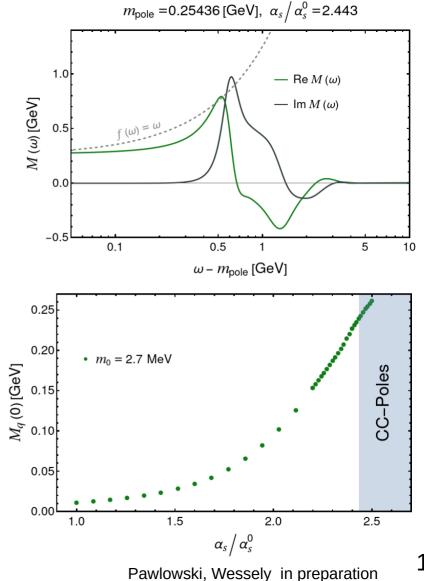
- Qualitative change in analytic structure before we reach the right amount of  $DB_\chi S$
- Stable feature of approximation



# $DB_{\chi}S$ and CC-poles

- Qualitative change in analytic structure before we reach the right amount of  $DB_\chi S$
- Stable feature of approximation
- But: Inclusion of other tensor structures is a way out
  - → Smaller Enhancement
  - → Different hirarchy of pole vs constituent mass

Fukushima, Horak, Pawlowski, Wink, Zelle arXiv:2308.16594

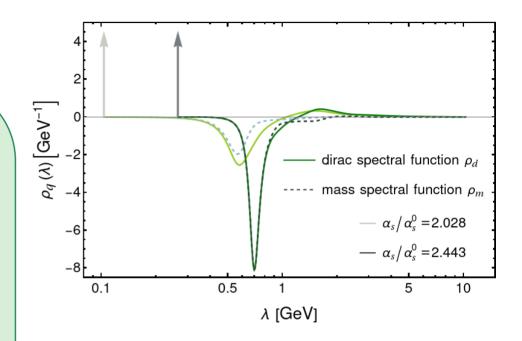


#### Conclusion & Outlook

- Self-consistent solution of the spectral gap equation with a non-trivial vertex leads to a single real pole
- Additional CC-poles appear (relatively) far away from the real axis if the coupling is enhanced too much.

#### Todo:

- → Take full "spectral" STI-vertex into account
- Monitor chiral symmetry breaking tensorstructures
- → Finite temperature quark spectral functions



Thanks for your attention!

# Where functional Methods can help:

$$\mathcal{D}_{s} = \lim_{\omega \to 0} \frac{\sigma(\omega, \overrightarrow{p} = 0)}{\omega \chi_{q} \pi}$$

Kubo Formulas require infrared limits of realtime correlators

#### **Spectral Functional Methods:**

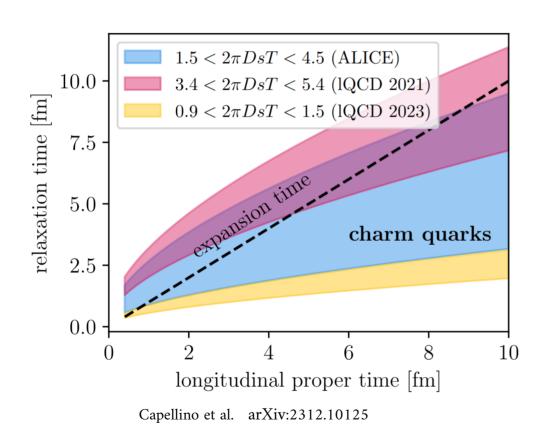
- Access to realtime correlations and finite chemical potentials
- → Direct computation

$$\sigma(\omega, \mathbf{p}) = \frac{1}{\pi} \int dt \, e^{i\omega t} \int d^3x \, e^{i\mathbf{x}\mathbf{p}} \langle [J_i(t, \mathbf{x}), J_i(0, 0)] \rangle$$
with  $J^{\mu} = \bar{\psi}\gamma^{\mu}\psi$ 

$$\langle J_{\mu}(x)J_{\nu}(0)\rangle$$
  $\propto$ 

Need quark propagator in real time

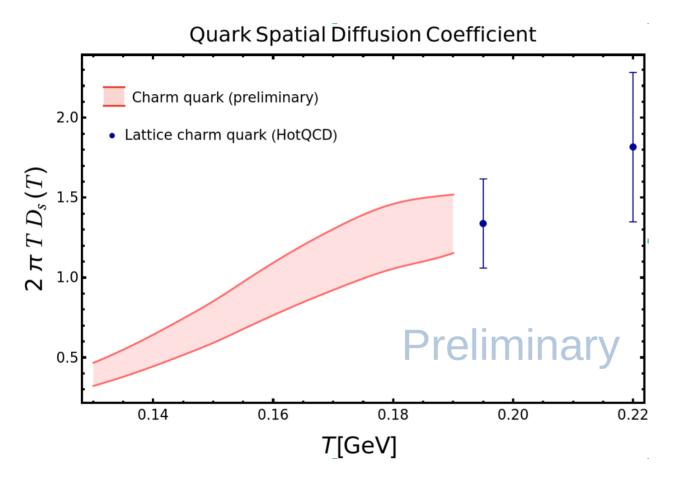
#### Heavy Quark Diffusion, What We Know:

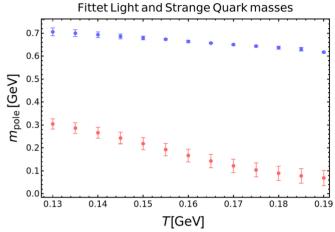


ALICE LQCD, charm QPM, charm LQCD, bottom QPM. bottom LQCD,  $M \to \infty$ 10 QPM,  $M \to \infty$ T-matrix, charm T-matrix, bottom 8 T-matrix,  $M \to \infty$  $2\pi TD_s$ pert. NLO 4 2 AdS/CFT 150 200 250 300 350 400 T [MeV]

HotQCD Phys.Rev.Lett. 132 (2024) 5, 051902

#### First Results





Input masses and effective coupling fittet to euclidean DSE Data,

Lu, Gao, Liu, Pawlowski arXiv:2310.18383

Quark Number suszeptibility from Borsányi et al. Phys. Rev. D 92, 114505

Normalisation fixed at lattice results HotQCD Phys.Rev.Lett. 132 (2024) 5, 051902

#### Outlook

• Quark diffusion coefficient for all flavours

• Quark contributions to the shear viscosity

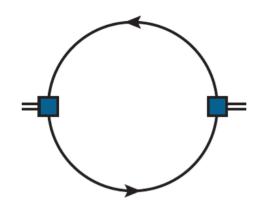
• Electric conductivity

• Estimate of relaxation times

• At finite chemical potential

- Quark gluon vertex
  - Momentum/frequency dependencies
  - Additional tensor structures
- Fully self consistent solution without eucl. Input
  - -> systematic error analysis
- Computation of further (subleading) diagrams
  - -> gluon and pion exchange

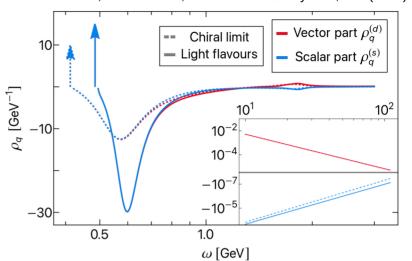
#### Utilize spectral functions



$$\propto \int_{a} G(q)G(p-q)$$

$$= \int_{\lambda_1,\lambda_2} \rho(\lambda_1)\rho(\lambda_2) \underbrace{\int_q \frac{1}{(\lambda_1^2 + q^2)(\lambda_2^2 + (p-q)^2)}}_{q}$$

J.Horak, J. Pawlowski, N. WinkSciPost Phys. 15, 149 (2023)



$$G(p^2) = \int_{-\infty}^{\infty} \frac{d\lambda\lambda}{2\pi} \, \frac{\rho(\lambda)}{\lambda^2 + p^2}$$

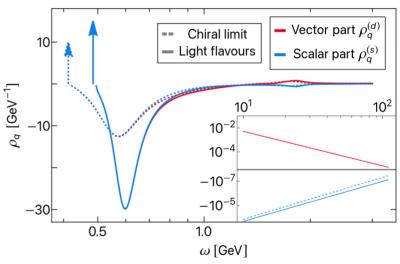
#### Spectral functional methods

$$\int_{\lambda_q,\lambda_A} \rho_A(\lambda_1) \rho_q(\lambda_2) \int_q \frac{1}{(\lambda_q + i\gamma_\mu q^\mu)(\lambda_A^2 + (p - q)^2)}$$

$$= - - \int_{q\bar{q}} 0$$

$$\rho_q(\lambda)$$

$$G(p^2) = \int_{-\infty}^{\infty} \frac{d\lambda\lambda}{2\pi} \frac{\rho(\lambda)}{\lambda^2 + p^2}$$



J.Horak, J. Pawlowski, N. WinkSciPost Phys. 15, 149 (2023)