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An improved basis:

The only consequence is the borrowing of a a new 
piece by the tree-level form factor. 
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Concerning the kernel for the displacement function: Averaging over all kinematic configurations 
sharing the same     , a smoothly behaving 
curve fully agreeing with        is left, both 
strongly supporting planar degeneracy and 
greatly improving the statistics for the 
determination of this latter form factor.  
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Summary

➢ The 3-gluon vertex, triggered by the non-perturbative nature of QCD, contains a key ingredient for 
the activation of Schwinger mechanism, responsible for the gluon mass generation. Such an 
ingredient is made crucially manifest by analysing the STId involving the 3-gluon vertex, through the 
so-called displacement function. 

➢ To perform this analysis, the required piece can be directly accessed from lattice QCD calculations: 
the transversely projected 3-gluon vertex.

➢ We have expanded the trasversely projected 3-gluon vertex by using a basis for which any of its 
elements satisfies the Bose symmetry, thus obtaining form factors that can only depend on Bose-
symmetric combinations of momenta. Such form factors, particularly the one behaving as the tree-
level one, are seen to depend basically on                                   and nothing else. We called this 
property planar degeneracy.

➢ Owing to planar degeneracy, the transverselly projected 3-gluon vertex can be well and easily 
approximated, and applied to deliver a compact expression of the kernel involved in the computation 
of the displacement function. A direct lattice calculation supportss the approximation.   

➢ To the extent that planar degeneracy works as a reliable approximation, a unique definition of the 
3-gluon QCD coupling can be made, irrespectively of any particular kinematic configuration.             
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