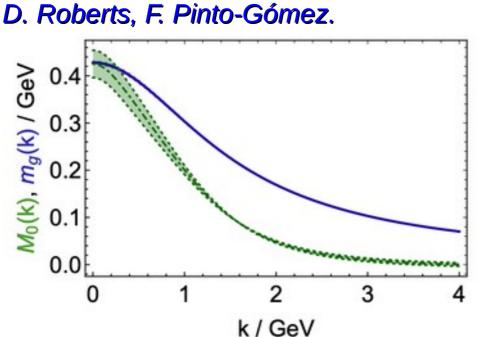
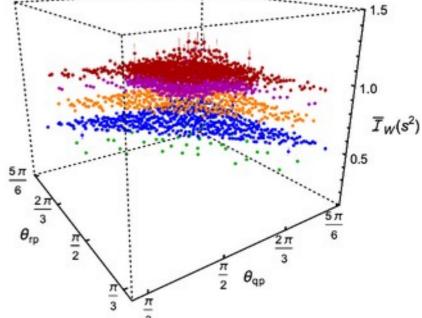
Complete analysis of the Landau-gauge 3-gluon vertex from lattice QCD by J. Rodríguez-Quintero

Phys.Lett.B 838 (2023) 137737, Phys.Lett.B 841 (2023) 137906, Phys.Rev.D 110 (2024) 1, 014005 In collaboration with: A.C. Aguilar, F. De Soto, M.N. Ferreira, J. Papavassiliou, C.

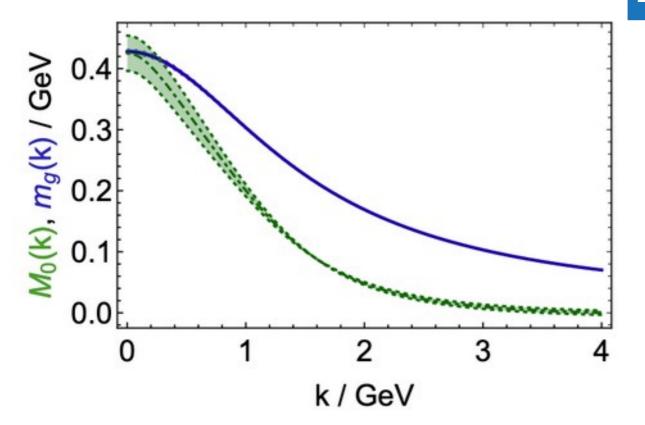


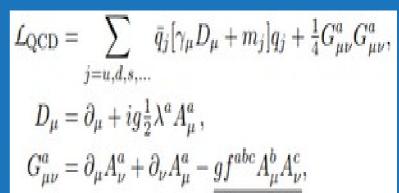


Valencia (Spain), QuantFunc2024, September 2th - 6th, 2024.

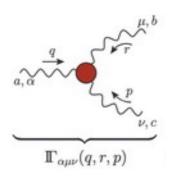
Motivation: The emergence of gluon mass

- ➤ QCD is characterized by two **emergent** phenomena: confinement and DGM, both tighly connected to the running coupling.
- ➤ RGI gluon and chiral-limit quark masses can be defined and found to be commesurate with each other and of the order of half of the proton mass.





➤ The **3-gluon vertex**, triggered by the non-abelian nature of QCD,



$$\begin{split} \mathcal{L}_{\text{QCD}} &= \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}, \\ D_\mu &= \partial_\mu + i g \frac{1}{2} \lambda^a A^a_\mu \,, \\ G^a_{\mu\nu} &= \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu, \end{split}$$

➤ The **3-gluon vertex**, triggered by the non-abelian nature of QCD, is a key ingredient for the gluon mass generation mechanism [Schwinger mechanism].



$$\begin{split} \mathcal{L}_{\text{QCD}} &= \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}, \\ D_\mu &= \partial_\mu + i g \frac{1}{2} \lambda^a A^a_\mu \,, \\ G^a_{\mu\nu} &= \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu, \end{split}$$

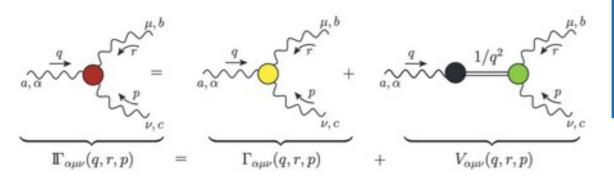
J. M. Cornwall, Phys.Rev. D 26 (1982) 1453 Aguilar et al. Phys. Rev. D85 (2012) 014018. Aguilar et al., Phys.Rev D105 (2022)014030 Longitudinal massless poles activating the **Schwinger mechanism**

$$V_{\alpha\mu\nu}(q,r,p) = \frac{q_{\alpha}}{q^2}g_{\mu\nu}C_1(q,r,p) + \cdots$$

$$\lim_{q \to 0} C_1(q, r, p) = 2(q \cdot r)\mathbb{C}(r^2) + \mathcal{O}(q^2)$$

$$\mathbb{C}(r^2) := \left[\frac{\partial C_1(q,r,p)}{\partial p^2}\right]_{q=0}$$

➤ The **3-gluon vertex**, triggered by the non-abelian nature of QCD, is a key ingredient for the gluon mass generation mechanism [Schwinger mechanism].



$$\begin{split} \mathcal{L}_{\text{QCD}} &= \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}, \\ D_\mu &= \partial_\mu + i g \frac{1}{2} \lambda^a A^a_\mu, \\ G^a_{\mu\nu} &= \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu, \end{split}$$

Longitudinal massless poles activating the **Schwinger mechanism**

J. M. Cornwall, Phys.Rev. D 26 (1982) 1453 Aguilar et al. Phys. Rev. D85 (2012) 014018. Aguilar et al., Phys.Rev D105 (2022)014030

$$V_{\alpha\mu\nu}(q,r,p) = \frac{q_{\alpha}}{q^2}g_{\mu\nu}C_1(q,r,p) + \cdots$$

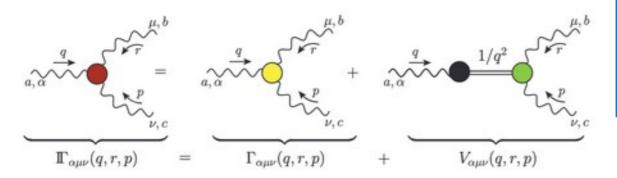
 $\lim_{q\to 0} C_1(q, r, p) = 2(q \cdot r)\mathbb{C}(r^2) + \mathcal{O}(q^2)$

From 3-g STI:

$$\mathbb{C}(r^2) = L_{sg}(r^2) - F(0) \left\{ rac{\mathcal{W}(r^2)}{r^2} \Delta^{-1}(r^2) + \widetilde{Z}_1 \, rac{d\Delta^{-1}(r^2)}{dr^2}
ight\}$$

$$\mathbb{C}(r^2) := \left[\frac{\partial C_1(q,r,p)}{\partial p^2} \right]_{q=0}$$

➤ The **3-gluon vertex**, triggered by the non-abelian nature of QCD, is a key ingredient for the gluon mass generation mechanism [Schwinger mechanism].



$$\begin{split} \mathcal{L}_{\text{QCD}} &= \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}, \\ D_\mu &= \partial_\mu + i g \frac{1}{2} \lambda^a A^a_\mu, \\ G^a_{\mu\nu} &= \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu, \end{split}$$

Longitudinal massless poles activating the **Schwinger mechanism**

J. M. Cornwall, Phys.Rev. D 26 (1982) 1453 Aguilar et al. Phys. Rev. D85 (2012) 014018. Aguilar et al., Phys.Rev D105 (2022)014030

$$V_{\alpha\mu\nu}(q,r,p) = \frac{q_{\alpha}}{q^2}g_{\mu\nu}C_1(q,r,p) + \cdots$$

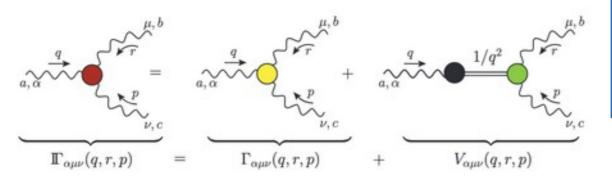
 $\lim_{q\to 0} C_1(q,r,p) = 2(q\cdot r)\mathbb{C}(r^2) + \mathcal{O}(q^2)$

$$\mathbb{C}(r^2) = L_{sg}(r^2) - F(0) \left\{ \frac{\mathcal{W}(r^2)}{r^2} \underline{\Delta}^{-1}(r^2) + \widetilde{Z}_1 \frac{d\Delta^{-1}(r^2)}{dr^2} \right\} \quad \mathbb{C}(r^2) := \left[\frac{1}{2} \frac{d\Delta^{-1}(r^2)}{dr^2} \right] \quad \mathbb{C}(r^2) := \left[\frac{d\Delta^{-1}(r^2)}{$$

$$\mathbb{C}(r^2) := \left[\frac{\partial C_1(q,r,p)}{\partial p^2}\right]_{q=0}$$

Soft-gluon 3-gluon form factor Gluon two-point function Ghost-gluon finite RC Ghost dressing

The 3-gluon vertex, triggered by the non-abelian nature of QCD, is a key ingredient for the gluon mass generation mechanism [Schwinger mechanism].



$$\begin{split} \mathcal{L}_{\text{QCD}} &= \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}, \\ D_\mu &= \partial_\mu + i g \frac{1}{2} \lambda^a A^a_\mu \,, \\ G^a_{\mu\nu} &= \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu, \end{split}$$

Longitudinal massless poles activating the Schwinger mechanism

J. M. Cornwall, Phys.Rev. D 26 (1982) 1453 Aguilar et al. Phys. Rev. D85 (2012) 014018. Aguilar et al., Phys.Rev D105 (2022)014030

$$V_{\alpha\mu\nu}(q,r,p) = \frac{q_{\alpha}}{q^2}g_{\mu\nu}C_1(q,r,p) + \cdots$$

From 3-g STI:

$$\mathbb{C}(r^2) = L_{sg}(r^2) - F(0) \left\{ \frac{\mathcal{W}(r^2)}{r^2} \Delta^{-1}(r^2) + \widetilde{Z}_1 \frac{d\Delta^{-1}(r^2)}{dr^2} \right\} \quad \mathbb{C}(r^2) := \left[\frac{\partial C_1(q, r, p)}{\partial p^2} \right]$$

$$\lim_{q\to 0} C_1(q,r,p) = 2(q\cdot r)\mathbb{C}(r^2) + \mathcal{O}(q^2)$$

$$\mathbb{C}(r^2) := \left[\frac{\partial C_1(q, r, p)}{\partial p^2} \right]_{q=0}$$

Displacement function

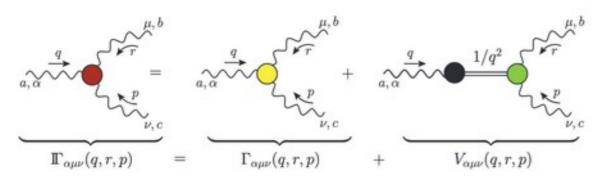
Soft-gluon 3-gluon form factor Gluon two-point function

Ghost-gluon finite RC **Ghost dressing**

$$W_1(r^2) = \frac{g^2 C_A \widetilde{Z}_1}{6} \int_k \Delta(k^2) D(k^2) D(t^2) (r \cdot k) B_1(t, -k, -r) B_1(k, 0, -k) \left[1 - \frac{(r \cdot k)^2}{r^2 k^2} \right]$$

$$W_2(r^2) = -\frac{g^2 C_A \widetilde{Z}_1}{6} \int_k \Delta(k^2) \Delta(t^2) D(t^2) B_1(t, 0, -t) \mathcal{I}_W(r^2, k^2, t^2)$$

The 3-gluon vertex, triggered by the non-abelian nature of QCD, is a key ingredient for the gluon mass generation mechanism [Schwinger mechanism].



$$\begin{split} \mathcal{L}_{\text{QCD}} &= \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}, \\ D_\mu &= \partial_\mu + i g \frac{1}{2} \lambda^a A^a_\mu, \\ G^a_{\mu\nu} &= \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu, \end{split}$$

Longitudinal massless poles activating the Schwinger mechanism

J. M. Cornwall, Phys.Rev. D 26 (1982) 1453 Aguilar et al. Phys. Rev. D85 (2012) 014018. Aguilar et al., Phys.Rev D105 (2022)014030

$$V_{\alpha\mu\nu}(q,r,p) = \frac{q_{\alpha}}{q^2}g_{\mu\nu}C_1(q,r,p) + \cdots$$

 $\lim_{q\to 0} C_1(q, r, p) = 2(q \cdot r)\mathbb{C}(r^2) + \mathcal{O}(q^2)$

$$\mathbb{C}(r^2) = L_{sg}(r^2) - F(0) \left\{ \frac{\mathcal{W}(r^2)}{r^2} \right\}$$

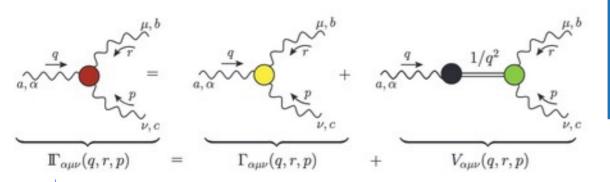
$$\mathbb{C}(r^2) = L_{sg}(r^2) - F(0) \left\{ \frac{W(r^2)}{r^2} \Delta^{-1}(r^2) + \widetilde{Z}_1 \frac{d\Delta^{-1}(r^2)}{dr^2} \right\} \quad \mathbb{C}(r^2) := 0$$

$$\mathbb{C}(r^2) := \left[\frac{\partial C_1(q,r,p)}{\partial p^2} \right]_{q=0}$$

Soft-gluon 3-gluon form factor Gluon two-point function Ghost-gluon finite RC **Ghost dressing**

$$\mathcal{I}_{\mathcal{W}}(q^2,r^2,p^2) := rac{1}{2}(q-r)^{
u}\delta^{lpha\mu}\overline{\Gamma}_{lpha\mu
u}(q,r,p)$$

The 3-gluon vertex, triggered by the non-abelian nature of QCD, is a key ingredient for the gluon mass generation mechanism [Schwinger mechanism].



$$\begin{split} \mathcal{L}_{\text{QCD}} &= \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}, \\ D_\mu &= \partial_\mu + i g \frac{1}{2} \lambda^a A^a_\mu \,, \\ G^a_{\mu\nu} &= \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu, \end{split}$$

Longitudinal massless poles activating the

Schwinger mechanism

Displacement function

$$V_{\alpha\mu\nu}(q,r,p) = \frac{q_{\alpha}}{q^2}g_{\mu\nu}C_1(q,r,p) + \cdots$$

From 3-q STI:

$$\mathbb{C}(r^2) = L_{sg}(r^2) - F(0) \left\{ \frac{\mathcal{W}(r^2)}{r^2} \right\}$$

$$\lim_{q\to 0} C_1(q,r,p) = 2(q\cdot r)\mathbb{C}(r^2) + \mathcal{O}(q^2)$$

$$\mathbb{C}(r^2) = L_{sg}(r^2) - F(0) \left\{ \frac{\mathcal{W}(r^2)}{r^2} \Delta^{-1}(r^2) + \widetilde{Z}_1 \frac{d\Delta^{-1}(r^2)}{dr^2} \right\} \quad \mathbb{C}(r^2) := \left[\frac{\partial C_1(q, r, p)}{\partial p^2} \right]_{q=0}$$

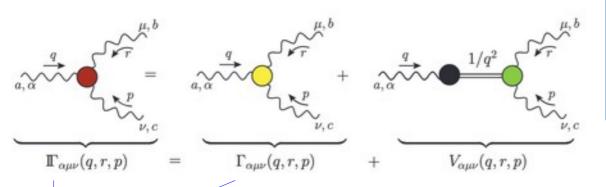
Soft-gluon 3-gluon form factor Gluon two-point function Ghost-gluon finite RC **Ghost dressing**

 $\mathcal{I}_{\mathcal{W}}(q^2, r^2, p^2) := \frac{1}{2}(q-r)^{\nu}\delta^{\alpha\mu}\overline{\Gamma}_{\alpha\mu\nu}(q, r, p)$

Transversely projected 3-gluon vertex

$$\overline{\Gamma}_{\alpha\mu\nu}(q,r,p) = \Gamma^{\alpha'\mu'\nu'}(q,r,p)P_{\alpha'\alpha}(q)P_{\mu'\mu}(r)P_{\nu'\nu}(p)$$

The 3-gluon vertex, triggered by the non-abelian nature of QCD, is a key ingredient for the gluon mass generation mechanism [Schwinger mechanism] .



$$\begin{split} \mathcal{L}_{\text{QCD}} &= \sum_{j=u,d,s,...} \bar{q}_{j} [\gamma_{\mu} D_{\mu} + m_{j}] q_{j} + \frac{1}{4} G^{a}_{\mu\nu} G^{a}_{\mu\nu}, \\ D_{\mu} &= \partial_{\mu} + i g \frac{1}{2} \lambda^{a} A^{a}_{\mu}, \\ G^{a}_{\mu\nu} &= \partial_{\mu} A^{a}_{\nu} + \partial_{\nu} A^{a}_{\mu} - g f^{abc} A^{b}_{\mu} A^{c}_{\nu}, \end{split}$$

Longitudinal massless poles activating the

 $\lim_{q\to 0} C_1(q, r, p) = 2(q \cdot r)\mathbb{C}(r^2) + \mathcal{O}(q^2)$

Schwinger mechanism

$$V_{\alpha\mu\nu}(q,r,p) = \frac{q_{\alpha}}{q^2}g_{\mu\nu}C_1(q,r,p) + \cdots$$

$$\mathbb{C}(r^2) = L_{sg}(r^2) - F(0) \left\{ \right\}$$

$$\mathbb{C}(r^2) = L_{sg}(r^2) - F(0) \left\{ \frac{\mathcal{W}(r^2)}{r^2} \Delta^{-1}(r^2) + \widetilde{Z}_1 \frac{d\Delta^{-1}(r^2)}{dr^2} \right\} \quad \mathbb{C}(r^2) := \left[\frac{\partial C_1(q, r, p)}{\partial p^2} \right]$$

$$\mathbb{C}(r^2) := \left[\frac{\partial C_1(q,r,p)}{\partial p^2}\right]_{q=0}$$

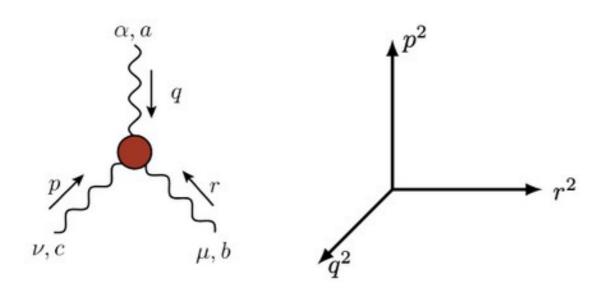
Displacement function

Soft-gluon 3-gluon form factor Gluon two-point function Ghost-gluon finite RC **Ghost dressing**

▼ Transversely projected 3-gluon vertex

$$\mathcal{I}_{\mathcal{W}}(q^2,r^2,p^2) := rac{1}{2}(q-r)^{
u}\delta^{lpha\mu}\overline{\Gamma}_{lpha\mu
u}(q,r,p)$$

$$\overline{\Gamma}_{\alpha\mu\nu}(q,r,p) = \mathbb{\Gamma}^{\alpha'\mu'\nu'}(q,r,p)P_{\alpha'\alpha}(q)P_{\mu'\mu}(r)P_{\nu'\nu}(p) = \Gamma^{\alpha'\mu'\nu'}(q,r,p)P_{\alpha'\alpha}(q)P_{\mu'\mu}(r)P_{\nu'\nu}(p)$$



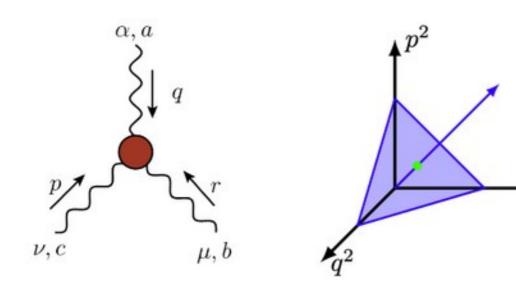
A general kinematic configuration remains fully described by the three squared momenta and can be geometrically represented by the three cartesian coordinates:

$$(q^2, r^2, p^2)$$

With the the angles:

$$\cos \theta_{qr} = (p^2 - q^2 - r^2)/2 \sqrt{q^2 r^2}$$

And equivalentely for $\; \theta_{rp}, \theta_{pq} \;$



A general kinematic configuration remains fully described by the three squared momenta and can be geometrically represented by the three cartesian coordinates:

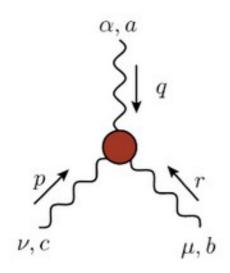
$$\hat{p}^2 = (q^2 + r^2 + p^2) / \sqrt{3}$$

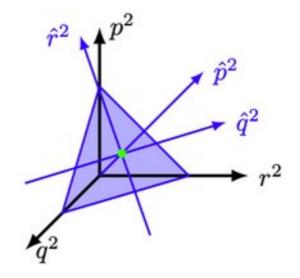
$$(q^2, r^2, p^2)$$

With the the angles:

$$\cos \theta_{qr} = (p^2 - q^2 - r^2)/2\sqrt{q^2r^2}$$

And equivalentely for $\; \theta_{rp}, \theta_{pq} \;$





A general kinematic configuration remains fully described by the three squared momenta and can be geometrically represented by the three cartesian coordinates:

$$(q^2, r^2, p^2)$$

More symmetrically:

ains fully three
$$\hat{q}^2 = (r^2 - q^2) / \sqrt{2},$$
 and can represented sian
$$\hat{r}^2 = (2p^2 - q^2 - r^2) / \sqrt{6}$$

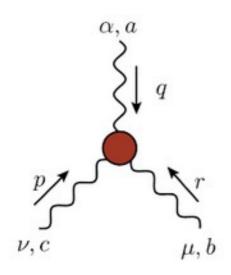
$$\hat{r}^2 = (q^2 + r^2 + p^2) / \sqrt{3}$$

$$(\hat{q}^2, \hat{r}^2, \hat{p}^2)$$

With the the angles:

$$\cos \theta_{qr} = (p^2 - q^2 - r^2)/2 \sqrt{q^2 r^2}$$

And equivalentely for $\; \theta_{rp}, \theta_{pq} \;$



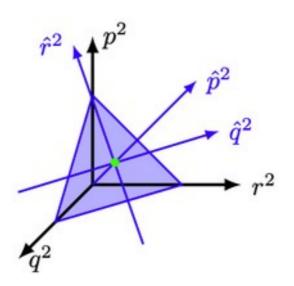
A general kinematic configuration remains fully described by the three squared momenta and can be geometrically represented by the three cartesian coordinates:

$$(q^2, r^2, p^2)$$

With the the angles:

$$\cos\theta_{qr} = (p^2 - q^2 - r^2)/2\sqrt{q^2r^2}$$

And equivalentely for $\; \theta_{rp}, \theta_{pq} \;$



More symmetrically:

$$\hat{q}^2 = (r^2 - q^2) / \sqrt{2},$$
an
$$\hat{r}^2 = (2p^2 - q^2 - r^2) / \sqrt{6}$$

$$\hat{p}^2 = (q^2 + r^2 + p^2) / \sqrt{3}$$

$$(\hat{q}^2, \hat{r}^2, \hat{p}^2)$$

$$r^2 = 0$$

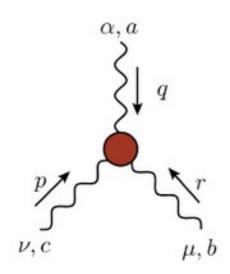
$$q^2 = 0$$

$$\hat{q}^2/\sqrt{6}\hat{p}^2$$

$$p^2 = 0$$

Momentum conservation implies for the 3-g kinematic representations to lie on the incircle

$$\hat{q}^4 + \hat{r}^4 \le \frac{1}{2}\hat{p}^4$$

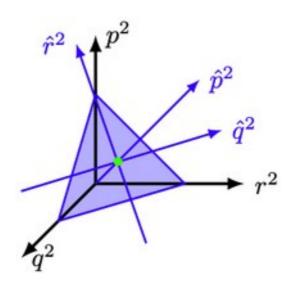


A general kinematic configuration remains fully described by the three squared momenta and can be geometrically represented by the three cartesian coordinates:

$$(q^2, r^2, p^2)$$

With the the angles:

$$\cos\theta_{qr}=(p^2-q^2-r^2)/2\,\sqrt{q^2r^2}$$
 And equivalentely for $\,\theta_{rp},\theta_{pq}$

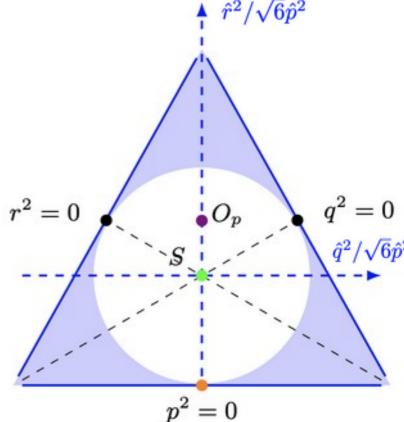


More symmetrically:

$$\hat{q}^2 = (r^2 - q^2) / \sqrt{2},$$
can
$$\hat{r}^2 = (2p^2 - q^2 - r^2) / \sqrt{6}$$

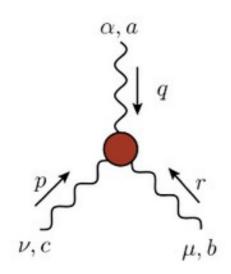
$$\hat{p}^2 = (q^2 + r^2 + p^2) / \sqrt{3}$$

$$(\hat{q}^2, \hat{r}^2, \hat{p}^2)$$



Momentum conservation implies for the 3-g kinematic representations to lie on the incircle $\hat{q}^4 + \hat{r}^4 \leq \frac{1}{2}\hat{p}^4$

Some particular cases can be then displayed

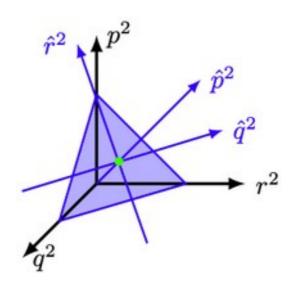


A general kinematic configuration remains fully described by the three squared momenta and can be geometrically represented by the three cartesian coordinates:

$$(q^2, r^2, p^2)$$

With the the angles:

$$\cos\theta_{qr}=(p^2-q^2-r^2)/2\,\sqrt{q^2r^2}$$
 And equivalentely for $\,\theta_{rp},\theta_{pq}$

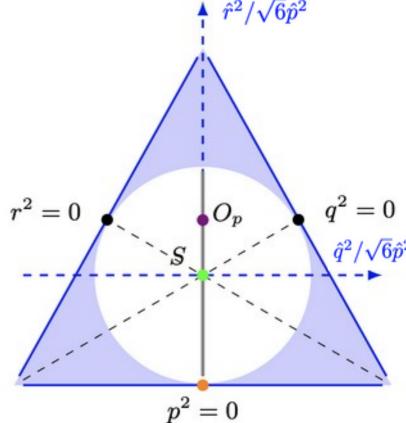


More symmetrically:

$$\hat{q}^2 = (r^2 - q^2) / \sqrt{2},$$
an $\hat{r}^2 = (2p^2 - q^2 - r^2) / \sqrt{6}$

$$\hat{p}^2 = (q^2 + r^2 + p^2) / \sqrt{3}$$

$$(\hat{q}^2, \hat{r}^2, \hat{p}^2)$$

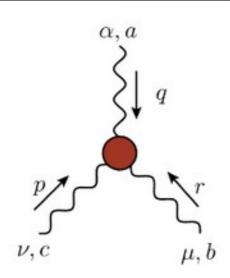


Momentum conservation implies for the 3-g kinematic representations to lie on the incircle $\hat{q}^4 + \hat{r}^4 \leq \frac{1}{2}\hat{p}^4$

Some particular cases can be then displayed, particularly the **bisectoral line**.

 $\hat{r}^2/\sqrt{6}\hat{p}^2$

3-gluon vertex: Kinematics

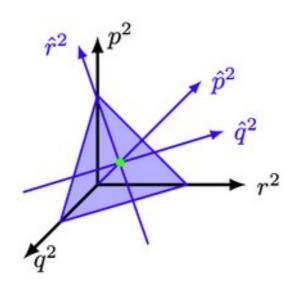


A general kinematic configuration remains fully described by the three squared momenta and can be geometrically represented by the three cartesian coordinates:

$$(q^2, r^2, p^2)$$

With the the angles:

$$\cos\theta_{qr}=(p^2-q^2-r^2)/2\,\sqrt{q^2r^2}$$
 And equivalentely for $~\theta_{rp},\theta_{pq}$



$$\hat{q}^{2} = (r^{2} - q^{2}) / \sqrt{2},$$

$$\hat{r}^{2} = (2p^{2} - q^{2} - r^{2}) / \sqrt{6}$$

$$\hat{p}^{2} = (q^{2} + r^{2} + p^{2}) / \sqrt{3}$$

$$(\hat{q}^{2}, \hat{r}^{2}, \hat{p}^{2})$$

$$p^2 = 0$$
Also in terms of
Bose-symmetric redefinitions
of the kinematic variables:

Op

$$s^{2} = \frac{q^{2} + r^{2} + p^{2}}{2}$$

$$t^{4} = \frac{(q^{2} - r^{2})^{2} + (r^{2} - p^{2})^{2} + (p^{2} - q^{2})^{2}}{3}$$

$$u^6 = (q^2 + r^2 - 2p^2)(r^2 + p^2 - 2q^2)(p^2 + q^2 - 2r^2)$$

 $\hat{q}^4 + \hat{r}^4 \le \frac{1}{2}\hat{p}^4$

Capitalizing on lattice QCD, one can only access non-amputated Green's function:

$$\mathcal{G}_{\alpha\mu\nu}(q,r,p) \; = \; \frac{1}{24} f^{abc} \langle \widetilde{A}^a_\alpha(q) \widetilde{A}^b_\mu(r) \widetilde{A}^c_\nu(p) \rangle$$

Capitalizing on lattice QCD, one can only access non-amputated Green's function:

$$\mathcal{G}_{\alpha\mu\nu}(q,r,p) = \frac{1}{24} f^{abc} \langle \widetilde{A}^a_{\alpha}(q) \widetilde{A}^b_{\mu}(r) \widetilde{A}^c_{\nu}(p) \rangle = g \overline{\Gamma}_{\alpha\mu\nu}(q,r,p) \underline{\Delta}(q^2) \underline{\Delta}(r^2) \underline{\Delta}(p^2)$$
Transversely projected 2 givertox. Gluon 2 point func

Transversely projected 3-g vertex Gluon 2-point functions

$$\Delta(p^2) = \frac{1}{24} \delta^{ab} P_{\mu\nu}(p) \langle \widetilde{A}_{\mu}^a(p) \widetilde{A}_{\mu}^b(-p) \rangle$$

Capitalizing on lattice QCD, one can only access non-amputated Green's function:

$$\mathcal{G}_{\alpha\mu\nu}(q,r,p) \; = \; \frac{1}{24} f^{abc} \langle \widetilde{A}^a_\alpha(q) \widetilde{A}^b_\mu(r) \widetilde{A}^c_\nu(p) \rangle = g \overline{\Gamma}_{\alpha\mu\nu}(q,r,p) \underline{\Delta(q^2) \Delta(r^2) \Delta(p^2)}$$

Transversely projected 3-g vertex

Gluon 2-point functions

★ Bose symmetry guarantees the sign reversing of the transversely projected 3-g vertex under the exchange of momenta and Lorentz indices (antisymmetric)

$$\Delta(p^2) = \frac{1}{24} \delta^{ab} P_{\mu\nu}(p) \langle \widetilde{A}_{\mu}^a(p) \widetilde{A}_{\mu}^b(-p) \rangle$$

Capitalizing on lattice QCD, one can only access non-amputated Green's function:

$$\mathcal{G}_{\alpha\mu\nu}(q,r,p) \; = \; \frac{1}{24} f^{abc} \langle \widetilde{A}^a_\alpha(q) \widetilde{A}^b_\mu(r) \widetilde{A}^c_\nu(p) \rangle = g \overline{\Gamma}_{\alpha\mu\nu}(q,r,p) \underline{\Delta}(q^2) \underline{\Delta}(r^2) \underline{\Delta}(p^2)$$

Transversely projected 3-g vertex

Gluon 2-point functions

★ Bose symmetry guarantees the sign reversing of the transversely projected 3-g vertex under the exchange of momenta and Lorentz indices (antisymmetric)

$$\Delta(p^2) = \frac{1}{24} \delta^{ab} P_{\mu\nu}(p) \langle \widetilde{A}^a_\mu(p) \widetilde{A}^b_\mu(-p) \rangle$$

$$\Gamma^{\alpha\mu\nu}(q,r,p) = \sum_{i=1}^{10} X_i(q^2,r^2,p^2) \, \ell_i^{\alpha\mu\nu}(q,r,p) \, + \, \sum_{i=1}^4 Y_i(q^2,r^2,p^2) \, t_i^{\alpha\mu\nu}(q,r,p) \qquad \text{Ball-Chiu basis}$$

10-d non-transverse subspace

4-d transverse subspace

Capitalizing on lattice QCD, one can only access non-amputated Green's function:

$$\mathcal{G}_{\alpha\mu\nu}(q,r,p) \ = \ \frac{1}{24} f^{abc} \langle \widetilde{A}^a_\alpha(q) \widetilde{A}^b_\mu(r) \widetilde{A}^c_\nu(p) \rangle = g \overline{\Gamma}_{\alpha\mu\nu}(q,r,p) \Delta(q^2) \Delta(r^2) \Delta(p^2)$$

Transversely projected 3-g vertex

Gluon 2-point functions

★ Bose symmetry guarantees the sign reversing of the transversely projected 3-g vertex under the exchange of momenta and Lorentz indices (antisymmetric)

$$\Delta(p^2) = \frac{1}{24} \delta^{ab} P_{\mu\nu}(p) \langle \widetilde{A}_{\mu}^a(p) \widetilde{A}_{\mu}^b(-p) \rangle$$

$$\Gamma^{\alpha\mu\nu}(q,r,p) = \sum_{i=1}^{10} X_i(q^2,r^2,p^2) \, \ell_i^{\alpha\mu\nu}(q,r,p) + \sum_{i=1}^4 Y_i(q^2,r^2,p^2) \, t_i^{\alpha\mu\nu}(q,r,p) \qquad \text{Ball-Chiu basis}$$

$$\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) = \sum_{i=1}^4 \widetilde{\Gamma}_i(q^2,r^2,p^2) \widetilde{\lambda}_i^{\alpha\mu\nu}(q,r,p)$$

4-d transverse subspace

Capitalizing on lattice QCD, one can only access non-amputated Green's function:

$$\mathcal{G}_{\alpha\mu\nu}(q,r,p) \ = \ \frac{1}{24} f^{abc} \langle \widetilde{A}^a_\alpha(q) \widetilde{A}^b_\mu(r) \widetilde{A}^c_\nu(p) \rangle = g \overline{\Gamma}_{\alpha\mu\nu}(q,r,p) \Delta(q^2) \Delta(r^2) \Delta(p^2)$$

Transversely projected 3-g vertex

Gluon 2-point functions

★ Bose symmetry guarantees the sign reversing of the transversely projected 3-g vertex under the exchange of momenta and Lorentz indices (antisymmetric)

$$\Delta(p^2) = \frac{1}{24} \delta^{ab} P_{\mu\nu}(p) \langle \widetilde{A}^a_\mu(p) \widetilde{A}^b_\mu(-p) \rangle$$

$$\begin{split} \Gamma^{\alpha\mu\nu}(q,r,p) &= \sum_{i=1}^{10} X_i(q^2,r^2,p^2) \, \ell_i^{\alpha\mu\nu}(q,r,p) \, + \, \sum_{i=1}^4 Y_i(q^2,r^2,p^2) \, t_i^{\alpha\mu\nu}(q,r,p) \quad \quad \text{Ball-Chiu basis} \\ \overline{\Gamma}^{\alpha\mu\nu}(q,r,p) &= \sum_{i=1}^4 \widetilde{\Gamma}_i(q^2,r^2,p^2) \widetilde{\lambda}_i^{\alpha\mu\nu}(q,r,p) \quad \quad \widetilde{\lambda}_1^{\alpha\mu\nu} = P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \left[\ell_1^{\alpha'\mu'\nu'} + \ell_4^{\alpha'\mu'\nu'} + \ell_7^{\alpha'\mu'\nu'} \right] \,, \\ \widetilde{\lambda}_2^{\alpha\mu\nu} &= \frac{3}{2s^2} \left(q - r \right)^{\nu'} (r - p)^{\alpha'} (p - q)^{\mu'} P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \,, \\ \widetilde{\lambda}_3^{\alpha\mu\nu} &= \frac{3}{2s^2} P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \left[\ell_3^{\alpha'\mu'\nu'} + \ell_6^{\alpha'\mu'\nu'} + \ell_9^{\alpha'\mu'\nu'} \right] \,, \\ \widetilde{\lambda}_4^{\alpha\mu\nu} &= \left(\frac{3}{2s^2} \right)^2 \left[t_1^{\alpha\mu\nu} + t_2^{\alpha\mu\nu} + t_3^{\alpha\mu\nu} \right] \,, \end{split}$$

Capitalizing on lattice QCD, one can only access non-amputated Green's function:

$$\mathcal{G}_{\alpha\mu\nu}(q,r,p) \ = \ \frac{1}{24} f^{abc} \langle \widetilde{A}^a_\alpha(q) \widetilde{A}^b_\mu(r) \widetilde{A}^c_\nu(p) \rangle = g \overline{\Gamma}_{\alpha\mu\nu}(q,r,p) \Delta(q^2) \Delta(r^2) \Delta(p^2)$$

Transversely projected 3-g vertex

Gluon 2-point functions

★ Bose symmetry guarantees the sign reversing of the transversely projected 3-g vertex under the exchange of momenta and Lorentz indices (antisymmetric)

$$\Delta(p^2) = \frac{1}{24} \delta^{ab} P_{\mu\nu}(p) \langle \widetilde{A}^a_\mu(p) \widetilde{A}^b_\mu(-p) \rangle$$

$$\Gamma^{\alpha\mu\nu}(q,r,p) = \sum_{i=1}^{10} X_i(q^2,r^2,p^2) \, \ell_i^{\alpha\mu\nu}(q,r,p) \, + \, \sum_{i=1}^4 Y_i(q^2,r^2,p^2) \, t_i^{\alpha\mu\nu}(q,r,p) \qquad \text{Ball-Chiu basis}$$

$$\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) = \sum_{i=1}^{4} \widetilde{\Gamma}_{i}(q^{2},r^{2},p^{2}) \widetilde{\lambda}_{i}^{\alpha\mu\nu}(q,r,p)$$

† Thus:

$$\widetilde{\Gamma}_i(q^2,r^2,p^2) = \widetilde{\Gamma}_i(r^2,q^2,p^2) = \widetilde{\Gamma}_i(q^2,p^2,r^2)$$

The form factors can only depend on bosesymmetric combinations of the three momenta, as

$$\hat{p}^2 = (q^2 + r^2 + p^2) / \sqrt{3}$$

$$\begin{split} \tilde{\lambda}_{1}^{\alpha\mu\nu} &= P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \left[\ell_{1}^{\alpha'\mu'\nu'} + \ell_{4}^{\alpha'\mu'\nu'} + \ell_{7}^{\alpha'\mu'\nu'} \right] \,, \\ \tilde{\lambda}_{2}^{\alpha\mu\nu} &= \frac{3}{2s^{2}} \left(q - r \right)^{\nu'} (r - p)^{\alpha'} (p - q)^{\mu'} P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \,, \\ \tilde{\lambda}_{3}^{\alpha\mu\nu} &= \frac{3}{2s^{2}} P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \left[\ell_{3}^{\alpha'\mu'\nu'} + \ell_{6}^{\alpha'\mu'\nu'} + \ell_{9}^{\alpha'\mu'\nu'} \right] \,, \\ \tilde{\lambda}_{4}^{\alpha\mu\nu} &= \left(\frac{3}{2s^{2}} \right)^{2} \left[t_{1}^{\alpha\mu\nu} + t_{2}^{\alpha\mu\nu} + t_{3}^{\alpha\mu\nu} \right] \,, \end{split}$$

Capitalizing on lattice QCD, one can only access non-amputated Green's function:

$$\mathcal{G}_{\alpha\mu\nu}(q,r,p) \ = \ \frac{1}{24} f^{abc} \langle \widetilde{A}^a_\alpha(q) \widetilde{A}^b_\mu(r) \widetilde{A}^c_\nu(p) \rangle = g \overline{\Gamma}_{\alpha\mu\nu}(q,r,p) \Delta(q^2) \Delta(r^2) \Delta(p^2)$$

Transversely projected 3-g vertex

Gluon 2-point functions

★ Bose symmetry guarantees the sign reversing of the transversely projected 3-g vertex under the exchange of momenta and Lorentz indices (antisymmetric)

$$\Delta(p^2) = \frac{1}{24} \delta^{ab} P_{\mu\nu}(p) \langle \widetilde{A}^a_{\mu}(p) \widetilde{A}^b_{\mu}(-p) \rangle$$

$$\Gamma^{\alpha\mu\nu}(q,r,p) = \sum_{i=1}^{10} X_i(q^2,r^2,p^2) \, \ell_i^{\alpha\mu\nu}(q,r,p) + \sum_{i=1}^4 Y_i(q^2,r^2,p^2) \, t_i^{\alpha\mu\nu}(q,r,p) \qquad \text{Ball-Chiu basis}$$

An improved basis:

$$\overline{\Gamma}_{\alpha\mu\nu}(q,r,p) = \sum_{i=1}^{4} \widetilde{\Gamma}_{i}^{*}(q^{2},r^{2},p^{2}) \widetilde{\lambda}_{i\alpha\mu\nu}^{*}(q,r,p)$$

$$\widetilde{\lambda}_{i\alpha\mu\nu}^*(q,r,p) = \widetilde{\lambda}_{i\alpha\mu\nu}(q,r,p) - \delta_{i3}\frac{3}{2}\widetilde{\lambda}_{1\alpha\mu\nu}(q,r,p)$$

$$\begin{split} \tilde{\lambda}_{1}^{\alpha\mu\nu} &= P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \left[\ell_{1}^{\alpha'\mu'\nu'} + \ell_{4}^{\alpha'\mu'\nu'} + \ell_{7}^{\alpha'\mu'\nu'} \right] \,, \\ \tilde{\lambda}_{2}^{\alpha\mu\nu} &= \frac{3}{2s^{2}} \left(q - r \right)^{\nu'} (r - p)^{\alpha'} (p - q)^{\mu'} P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \,, \\ \tilde{\lambda}_{3}^{\alpha\mu\nu} &= \frac{3}{2s^{2}} P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \left[\ell_{3}^{\alpha'\mu'\nu'} + \ell_{6}^{\alpha'\mu'\nu'} + \ell_{9}^{\alpha'\mu'\nu'} \right] \,, \\ \tilde{\lambda}_{4}^{\alpha\mu\nu} &= \left(\frac{3}{2s^{2}} \right)^{2} \left[t_{1}^{\alpha\mu\nu} + t_{2}^{\alpha\mu\nu} + t_{3}^{\alpha\mu\nu} \right] \,, \end{split}$$

Capitalizing on lattice QCD, one can only access non-amputated Green's function:

$$\mathcal{G}_{\alpha\mu\nu}(q,r,p) \ = \ \frac{1}{24} f^{abc} \langle \widetilde{A}^a_\alpha(q) \widetilde{A}^b_\mu(r) \widetilde{A}^c_\nu(p) \rangle = g \overline{\Gamma}_{\alpha\mu\nu}(q,r,p) \Delta(q^2) \Delta(r^2) \Delta(p^2)$$

Transversely projected 3-g vertex

Gluon 2-point functions

★ Bose symmetry guarantees the sign reversing of the transversely projected 3-g vertex under the exchange of momenta and Lorentz indices (antisymmetric)

$$\Delta(p^2) = \frac{1}{24} \delta^{ab} P_{\mu\nu}(p) \langle \widetilde{A}^a_{\mu}(p) \widetilde{A}^b_{\mu}(-p) \rangle$$

$$\Gamma^{\alpha\mu\nu}(q,r,p) = \sum_{i=1}^{10} X_i(q^2,r^2,p^2) \, \ell_i^{\alpha\mu\nu}(q,r,p) + \sum_{i=1}^4 Y_i(q^2,r^2,p^2) \, t_i^{\alpha\mu\nu}(q,r,p) \qquad \text{Ball-Chiu basis}$$

An improved basis:

$$\overline{\Gamma}_{lpha\mu
u}(q,r,p) = \sum_{i=1}^4 \widetilde{\Gamma}_i^*(q^2,r^2,p^2) \widetilde{\lambda}_{ilpha\mu
u}^*(q,r,p)$$

$$\widetilde{\lambda}_{i\alpha\mu\nu}^*(q,r,p) = \widetilde{\lambda}_{i\alpha\mu\nu}(q,r,p) - \delta_{i3}\frac{3}{2}\widetilde{\lambda}_{1\alpha\mu\nu}(q,r,p)$$

$$\widetilde{\Gamma}_{i}^{*}(q^{2}, r^{2}, p^{2}) = \sum_{k=1}^{4} \left(\delta_{ik} + \frac{3}{2}\delta_{i1}\delta_{k3}\right) \widetilde{\Gamma}_{k}(q^{2}, r^{2}, p^{2})$$

The only consequence is the borrowing of a a new piece by the tree-level form factor.

$$\begin{split} \tilde{\lambda}_{1}^{\alpha\mu\nu} &= P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \left[\ell_{1}^{\alpha'\mu'\nu'} + \ell_{4}^{\alpha'\mu'\nu'} + \ell_{7}^{\alpha'\mu'\nu'} \right] \,, \\ \tilde{\lambda}_{2}^{\alpha\mu\nu} &= \frac{3}{2s^{2}} \left(q - r \right)^{\nu'} (r - p)^{\alpha'} (p - q)^{\mu'} P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \,, \\ \tilde{\lambda}_{3}^{\alpha\mu\nu} &= \frac{3}{2s^{2}} P_{\alpha'}^{\alpha}(q) P_{\mu'}^{\mu}(r) P_{\nu'}^{\nu}(p) \left[\ell_{3}^{\alpha'\mu'\nu'} + \ell_{6}^{\alpha'\mu'\nu'} + \ell_{9}^{\alpha'\mu'\nu'} \right] \,, \\ \tilde{\lambda}_{4}^{\alpha\mu\nu} &= \left(\frac{3}{2s^{2}} \right)^{2} \left[t_{1}^{\alpha\mu\nu} + t_{2}^{\alpha\mu\nu} + t_{3}^{\alpha\mu\nu} \right] \,, \end{split}$$

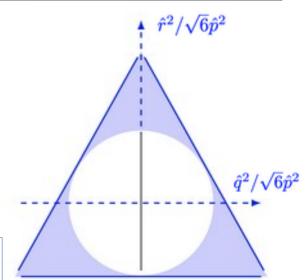
Specializing for the bisectoral case:

$$\lambda_{i}^{\alpha\mu\nu}(q,r,p) = \lim_{r^{2} \to q^{2}} \widetilde{\lambda}_{i}^{\alpha\mu\nu}(q,r,p)$$

$$\lim_{r^{2} \to q^{2}} \lambda_{4}^{\alpha\mu\nu} = \sum_{i=1}^{3} f_{i}(z) \lambda_{i}^{\alpha\mu\nu}(q,r,p)$$

$$f_{1}(z) = \frac{9}{16} z (1-z) \quad f_{2}(z) = \frac{9}{32} z - \frac{3}{8} \quad f_{3}(z) = \frac{3}{8} z$$

$$z = p^{2} / \left[q^{2} + \frac{p^{2}}{2} \right] \quad \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) = \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) + f_{i}(z) \overline{\Gamma}_{4}(q^{2}, q^{2}, p^{2})$$



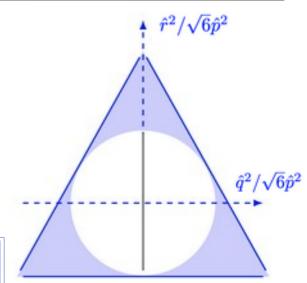
Specializing for the bisectoral case:

$$\lambda_{i}^{\alpha\mu\nu}(q, r, p) = \lim_{r^{2} \to q^{2}} \tilde{\lambda}_{i}^{\alpha\mu\nu}(q, r, p)$$

$$\lim_{r^{2} \to q^{2}} \lambda_{4}^{\alpha\mu\nu} = \sum_{i=1}^{3} f_{i}^{*}(z) \lambda_{i}^{\alpha\mu\nu}(q, r, p)$$

$$f_{1}^{*}(z) = \frac{9}{16} z(2 - z) \quad f_{2}^{*}(z) = \frac{9}{32} z - \frac{3}{8} \quad f_{3}^{*}(z) = \frac{3}{8} z$$

$$z = p^{2} / \left[q^{2} + \frac{p^{2}}{2} \right] \quad \overline{\Gamma}_{i}^{*}(q^{2}, q^{2}, p^{2}) = \overline{\Gamma}_{i}^{*}(q^{2}, q^{2}, p^{2}) + f_{i}^{*}(z) \, \overline{\Gamma}_{4}^{*}(q^{2}, q^{2}, p^{2})$$



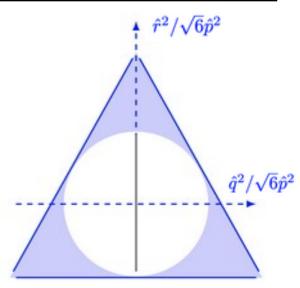
Specializing for the bisectoral case:

$$\lambda_{i}^{\alpha\mu\nu}(q,r,p) = \lim_{r^{2} \to q^{2}} \widetilde{\lambda}_{i}^{\alpha\mu\nu}(q,r,p)$$

$$\lim_{r^{2} \to q^{2}} \lambda_{4}^{\alpha\mu\nu} = \sum_{i=1}^{3} f_{i}(z) \lambda_{i}^{\alpha\mu\nu}(q,r,p)$$

$$f_{1}(z) = \frac{9}{16} z (1-z) \quad f_{2}(z) = \frac{9}{32} z - \frac{3}{8} \quad f_{3}(z) = \frac{3}{8} z$$

$$z = p^{2} / \left[q^{2} + \frac{p^{2}}{2} \right] \quad \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) = \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) + f_{i}(z) \overline{\Gamma}_{4}(q^{2}, q^{2}, p^{2})$$



Exploiting the following lattice configurations

β	L^4/a^4	a (fm)	confs
5.6	32^{4}	0.236	2000
5.8	32^{4}	0.144	2000
6.0	32^{4}	0.096	2000
6.2	32^{4}	0.070	2000

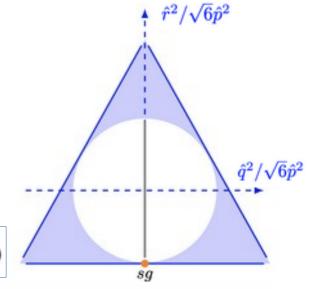
Specializing for the bisectoral case:

$$\lambda_{i}^{\alpha\mu\nu}(q,r,p) = \lim_{r^{2} \to q^{2}} \widetilde{\lambda}_{i}^{\alpha\mu\nu}(q,r,p)$$

$$\lim_{r^{2} \to q^{2}} \lambda_{4}^{\alpha\mu\nu} = \sum_{i=1}^{3} f_{i}(z) \lambda_{i}^{\alpha\mu\nu}(q,r,p)$$

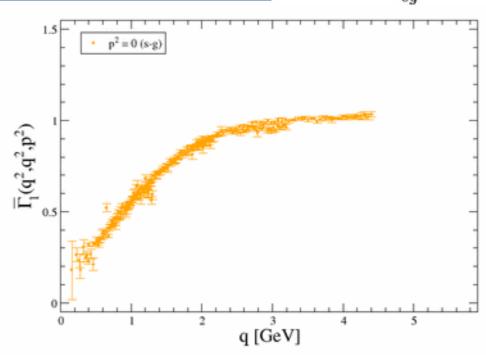
$$f_{1}(z) = \frac{9}{16} z (1-z) \quad f_{2}(z) = \frac{9}{32} z - \frac{3}{8} \quad f_{3}(z) = \frac{3}{8} z$$

$$z = p^{2} / \left[q^{2} + \frac{p^{2}}{2} \right] \quad \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) = \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) + f_{i}(z) \overline{\Gamma}_{4}(q^{2}, q^{2}, p^{2})$$



Exploiting the following lattice configurations

β	L^4/a^4	a (fm)	confs
5.6	32^{4}	0.236	2000
5.8	32^{4}	0.144	2000
6.0	32^{4}	0.096	2000
6.2	32^{4}	0.070	2000



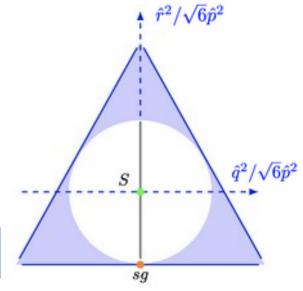
Specializing for the bisectoral case:

$$\lambda_{i}^{\alpha\mu\nu}(q,r,p) = \lim_{r^{2} \to q^{2}} \widetilde{\lambda}_{i}^{\alpha\mu\nu}(q,r,p)$$

$$\lim_{r^{2} \to q^{2}} \lambda_{4}^{\alpha\mu\nu} = \sum_{i=1}^{3} f_{i}(z) \lambda_{i}^{\alpha\mu\nu}(q,r,p)$$

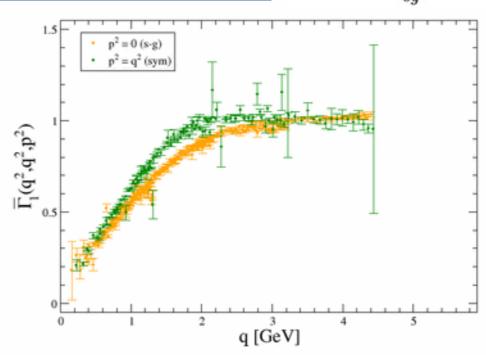
$$f_{1}(z) = \frac{9}{16} z (1-z) \quad f_{2}(z) = \frac{9}{32} z - \frac{3}{8} \quad f_{3}(z) = \frac{3}{8} z$$

$$z = p^{2} / \left[q^{2} + \frac{p^{2}}{2} \right] \quad \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) = \widetilde{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) + f_{i}(z) \widetilde{\Gamma}_{4}(q^{2}, q^{2}, p^{2})$$



Exploiting the following lattice configurations

β	L^4/a^4	a (fm)	confs
5.6	32^{4}	0.236	2000
5.8	32^{4}	0.144	2000
6.0	32^{4}	0.096	2000
6.2	32^{4}	0.070	2000



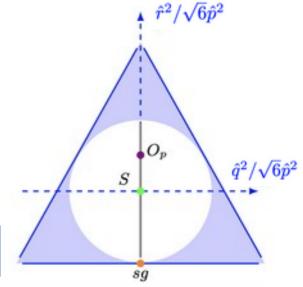
Specializing for the bisectoral case:

$$\lambda_{i}^{\alpha\mu\nu}(q,r,p) = \lim_{r^{2} \to q^{2}} \widetilde{\lambda}_{i}^{\alpha\mu\nu}(q,r,p)$$

$$\lim_{r^{2} \to q^{2}} \lambda_{4}^{\alpha\mu\nu} = \sum_{i=1}^{3} f_{i}(z) \lambda_{i}^{\alpha\mu\nu}(q,r,p)$$

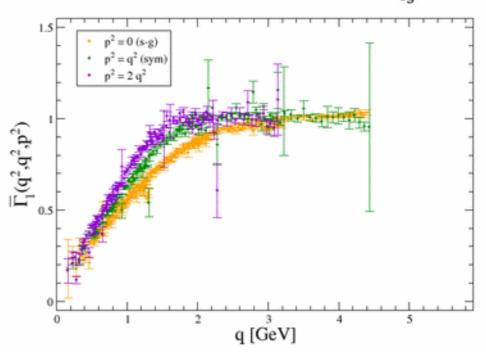
$$f_{1}(z) = \frac{9}{16} z(1-z) \quad f_{2}(z) = \frac{9}{32} z - \frac{3}{8} \quad f_{3}(z) = \frac{3}{8} z$$

$$z = p^{2} / \left[q^{2} + \frac{p^{2}}{2} \right] \quad \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) = \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) + f_{i}(z) \overline{\Gamma}_{4}(q^{2}, q^{2}, p^{2})$$



Exploiting the following lattice configurations

β	L^4/a^4	a (fm)	confs
5.6	32^{4}	0.236	2000
5.8	32^{4}	0.144	2000
6.0	32^{4}	0.096	2000
6.2	32^{4}	0.070	2000



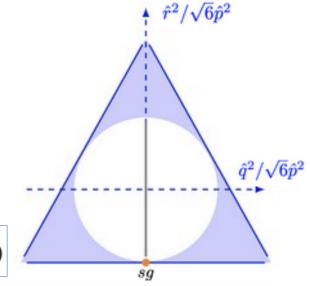
Specializing for the bisectoral case:

$$\lambda_{i}^{\alpha\mu\nu}(q,r,p) = \lim_{r^{2} \to q^{2}} \widetilde{\lambda}_{i}^{\alpha\mu\nu}(q,r,p)$$

$$\lim_{r^{2} \to q^{2}} \lambda_{4}^{\alpha\mu\nu} = \sum_{i=1}^{3} f_{i}(z) \lambda_{i}^{\alpha\mu\nu}(q,r,p)$$

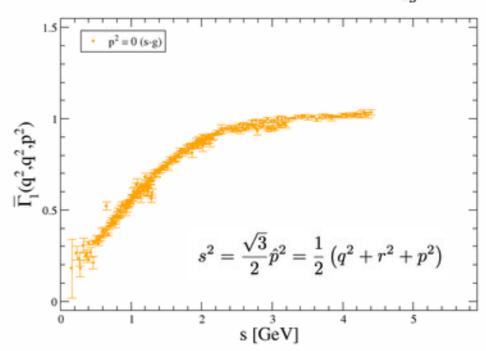
$$f_{1}(z) = \frac{9}{16} z(1-z) \quad f_{2}(z) = \frac{9}{32} z - \frac{3}{8} \quad f_{3}(z) = \frac{3}{8} z$$

$$z = p^{2} / \left[q^{2} + \frac{p^{2}}{2} \right] \quad \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) = \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) + f_{i}(z) \overline{\Gamma}_{4}(q^{2}, q^{2}, p^{2})$$



Exploiting the following lattice configurations

β	L^4/a^4	a (fm)	confs
5.6	32^{4}	0.236	2000
5.8	32^{4}	0.144	2000
6.0	32^{4}	0.096	2000
6.2	32^{4}	0.070	2000



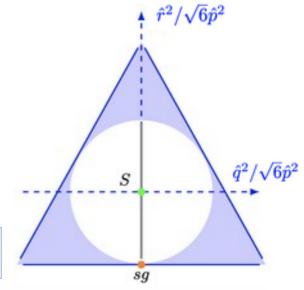
Specializing for the bisectoral case:

$$\lambda_{i}^{\alpha\mu\nu}(q,r,p) = \lim_{r^{2} \to q^{2}} \widetilde{\lambda}_{i}^{\alpha\mu\nu}(q,r,p)$$

$$\lim_{r^{2} \to q^{2}} \lambda_{4}^{\alpha\mu\nu} = \sum_{i=1}^{3} f_{i}(z) \lambda_{i}^{\alpha\mu\nu}(q,r,p)$$

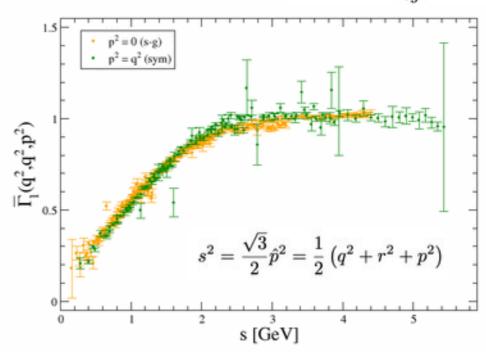
$$f_{1}(z) = \frac{9}{16} z (1-z) \quad f_{2}(z) = \frac{9}{32} z - \frac{3}{8} \quad f_{3}(z) = \frac{3}{8} z$$

$$z = p^{2} / \left[q^{2} + \frac{p^{2}}{2} \right] \quad \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) = \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) + f_{i}(z) \overline{\Gamma}_{4}(q^{2}, q^{2}, p^{2})$$



Exploiting the following lattice configurations

β	L^4/a^4	a (fm)	confs
5.6	32^{4}	0.236	2000
5.8	32^{4}	0.144	2000
6.0	32^{4}	0.096	2000
6.2	32^{4}	0.070	2000



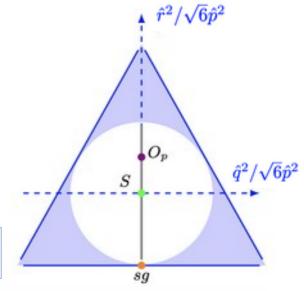
Specializing for the bisectoral case:

$$\lambda_{i}^{\alpha\mu\nu}(q,r,p) = \lim_{r^{2} \to q^{2}} \widetilde{\lambda}_{i}^{\alpha\mu\nu}(q,r,p)$$

$$\lim_{r^{2} \to q^{2}} \lambda_{4}^{\alpha\mu\nu} = \sum_{i=1}^{3} f_{i}(z) \lambda_{i}^{\alpha\mu\nu}(q,r,p)$$

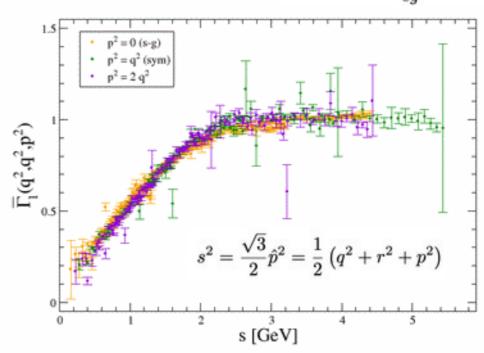
$$f_{1}(z) = \frac{9}{16} z (1-z) \quad f_{2}(z) = \frac{9}{32} z - \frac{3}{8} \quad f_{3}(z) = \frac{3}{8} z$$

$$z = p^{2} / \left[q^{2} + \frac{p^{2}}{2} \right] \quad \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) = \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) + f_{i}(z) \overline{\Gamma}_{4}(q^{2}, q^{2}, p^{2})$$



Exploiting the following lattice configurations

β	L^4/a^4	a (fm)	confs
5.6	32^{4}	0.236	2000
5.8	32^{4}	0.144	2000
6.0	32^{4}	0.096	2000
6.2	32^{4}	0.070	2000



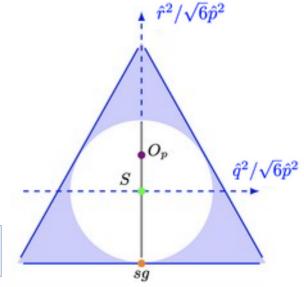
Specializing for the bisectoral case:

$$\lambda_{i}^{\alpha\mu\nu}(q,r,p) = \lim_{r^{2} \to q^{2}} \widetilde{\lambda}_{i}^{\alpha\mu\nu}(q,r,p)$$

$$\lim_{r^{2} \to q^{2}} \lambda_{4}^{\alpha\mu\nu} = \sum_{i=1}^{3} f_{i}(z) \lambda_{i}^{\alpha\mu\nu}(q,r,p)$$

$$f_{1}(z) = \frac{9}{16} z (1-z) \quad f_{2}(z) = \frac{9}{32} z - \frac{3}{8} \quad f_{3}(z) = \frac{3}{8} z$$

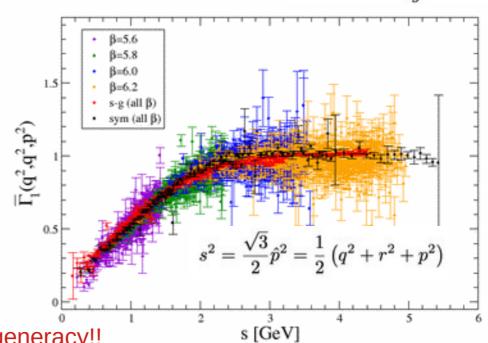
$$z = p^{2} / \left[q^{2} + \frac{p^{2}}{2} \right] \quad \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) = \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) + f_{i}(z) \overline{\Gamma}_{4}(q^{2}, q^{2}, p^{2})$$



Exploiting the following lattice configurations

β	L^4/a^4	a (fm)	confs
5.6	32^{4}	0.236	2000
5.8	32^{4}	0.144	2000
6.0	32^{4}	0.096	2000
6.2	32^{4}	0.070	2000

To calculate the required 2- and 3-point Green's functions and project out the 3-g form factors.



Planar degeneracy!!

3-gluon vertex: Lattice data results

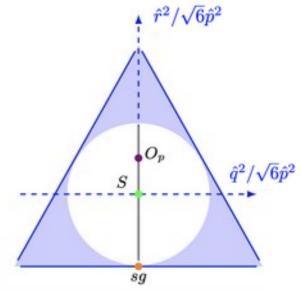
Specializing for the bisectoral case:

$$\lambda_{i}^{\alpha\mu\nu}(q,r,p) = \lim_{r^{2} \to q^{2}} \widetilde{\lambda}_{i}^{\alpha\mu\nu}(q,r,p)$$

$$\lim_{r^{2} \to q^{2}} \lambda_{4}^{\alpha\mu\nu} = \sum_{i=1}^{3} f_{i}(z) \lambda_{i}^{\alpha\mu\nu}(q,r,p)$$

$$f_{1}(z) = \frac{9}{16} z (1-z) \quad f_{2}(z) = \frac{9}{32} z - \frac{3}{8} \quad f_{3}(z) = \frac{3}{8} z$$

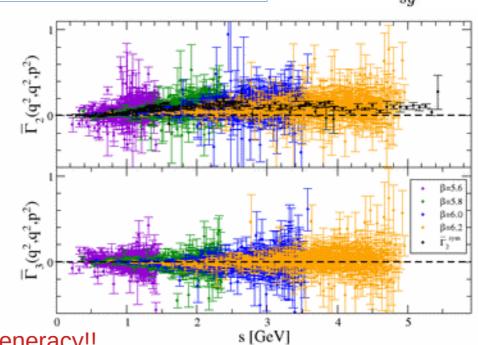
$$z = p^{2} / \left[q^{2} + \frac{p^{2}}{2} \right] \quad \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) = \overline{\Gamma}_{i}(q^{2}, q^{2}, p^{2}) + f_{i}(z) \overline{\Gamma}_{4}(q^{2}, q^{2}, p^{2})$$



Exploiting the following lattice configurations

β	L^4/a^4	a (fm)	confs
5.6	32^{4}	0.236	2000
5.8	32^{4}	0.144	2000
6.0	32^{4}	0.096	2000
6.2	32^{4}	0.070	2000

To calculate the required 2- and 3-point Green's functions and project out the 3-g form factors.



Planar degeneracy!!

$$\begin{array}{l} \text{Specializing for the symmetric case:} \\ \overline{\Gamma}_{\alpha\mu\nu}(r,q,p) = \sum_{i=1}^2 \overline{\Gamma}_i^{\text{sym}}(q^2) \lambda_{i\alpha\mu\nu}(q,r,p) \end{array} \\ \end{array} \\ \overline{\Gamma}_1^{\text{sym}}(q^2) = \lim_{p^2 \to q^2} \overline{\Gamma}_1(q^2,q^2,p^2) + \frac{1}{2} \, \overline{\Gamma}_3(q^2,q^2,p^2) \\ \overline{\Gamma}_2^{\text{sym}}(q^2) = \lim_{p^2 \to q^2} \overline{\Gamma}_2(q^2,q^2,p^2) - \frac{3}{4} \, \overline{\Gamma}_3(q^2,q^2,p^2) \end{array}$$

$$\lambda_{i\alpha\mu\nu}(q,r,p) = \lim_{p^2 \to q^2} \overline{\lambda}_{i\alpha\mu\nu}(q,r,p)$$

$$\overline{\Gamma}_{\alpha\mu\nu}(r,q,p) = \sum_{i=1}^{2} \overline{\Gamma}_{i}^{\text{sym}}(q^{2}) \lambda_{i\alpha\mu\nu}(q,r,p)$$

Specializing for the soft-gluon case:

$$\overline{\Gamma}_{\alpha\mu\nu}(r,q,p) = \overline{\Gamma}^{\mathrm{sg}}(q^2)\lambda_{1\alpha\mu\nu}(q,r,p)$$

Specializing for the symmetric case:
$$\overline{\Gamma}_{\alpha\mu\nu}(r,q,p) = \sum_{i=1}^{2} \overline{\Gamma}_{i}^{\mathrm{sym}}(q^{2}) \lambda_{i\alpha\mu\nu}(q,r,p)$$

$$\overline{\Gamma}_{\alpha\mu\nu}(r,q,p) = \sum_{i=1}^{2} \overline{\Gamma}_{i}^{\mathrm{sym}}(q^{2}) \lambda_{i\alpha\mu\nu}(q,r,p)$$

$$\overline{\Gamma}_{2}^{\mathrm{sym}}(q^{2}) = \lim_{p^{2} \to q^{2}} \overline{\Gamma}_{1}(q^{2},q^{2},p^{2}) + \frac{1}{2} \overline{\Gamma}_{3}(q^{2},q^{2},p^{2})$$

$$\overline{\Gamma}_{2}^{\mathrm{sym}}(q^{2}) = \lim_{p^{2} \to q^{2}} \overline{\Gamma}_{2}(q^{2},q^{2},p^{2}) - \frac{3}{4} \overline{\Gamma}_{3}(q^{2},q^{2},p^{2})$$
 Specializing for the soft-gluon case:
$$L_{\mathrm{sg}}(q^{2}) = \lim_{p^{2} \to 0} \overline{\Gamma}_{1}(q^{2},q^{2},p^{2}) + \frac{3}{2} \overline{\Gamma}_{3}(q^{2},q^{2},p^{2})$$

$$\overline{\Gamma}_{\alpha\mu\nu}(r,q,p) = \overline{\Gamma}^{\mathrm{sg}}(q^{2}) \lambda_{1\alpha\mu\nu}(q,r,p)$$

$$\lambda_{i\alpha\mu\nu}(q,r,p) = \lim_{p^{2} \to q^{2}} \overline{\lambda}_{i\alpha\mu\nu}(q,r,p)$$

$$= 1.2$$

$$\overline{\Gamma}_{\alpha\mu\nu}(r,q,p) = \sum_{i=1}^{2} \overline{\Gamma}_{i}^{\text{sym}}(q^{2}) \lambda_{i\alpha\mu\nu}(q,r,p)$$

Specializing for the soft-gluon case:

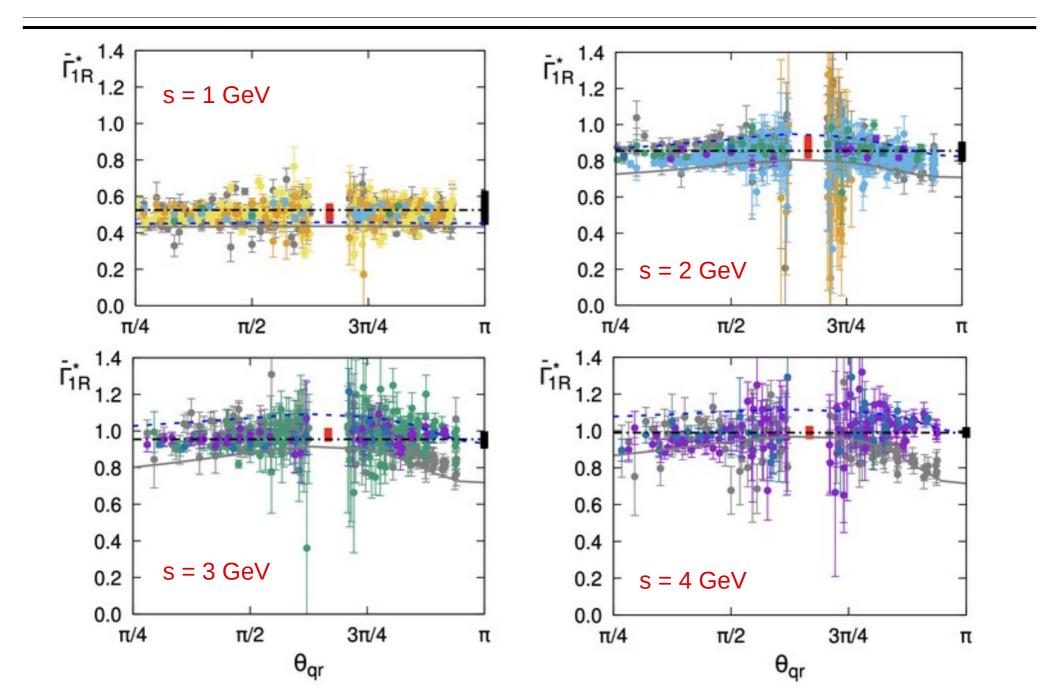
$$\overline{\Gamma}_{\alpha\mu\nu}(r,q,p) = \overline{\Gamma}^{\mathrm{sg}}(q^2)\lambda_{1\alpha\mu\nu}(q,r,p)$$

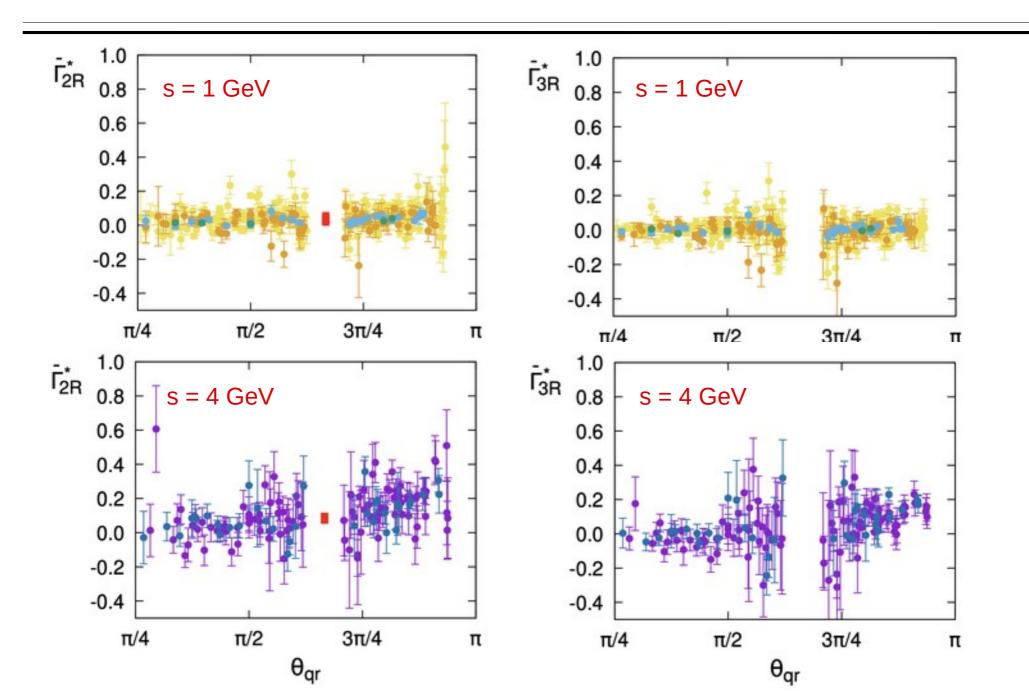
Specializing for the symmetric case:
$$\overline{\Gamma}_1^{\text{sym}}(q^2) = \lim_{p^2 \to q^2} \overline{\Gamma}_1^*(q^2, p^2) - \overline{\Gamma}_3^*(q^2, p^2)$$

$$\overline{\Gamma}_{\alpha\mu\nu}(r, q, p) = \sum_{i=1}^2 \overline{\Gamma}_i^{\text{sym}}(q^2) \lambda_{i\alpha\mu\nu}(q, r, p)$$

$$\overline{\Gamma}_2^{\text{sym}}(q^2) = \lim_{p^2 \to q^2} \overline{\Gamma}_2^*(q^2, p^2) - \frac{3}{4} \overline{\Gamma}_3^*(q^2, p^2)$$
 Specializing for the soft-gluon case:
$$L_{\text{sg}}(q^2) = \lim_{p^2 \to 0} \overline{\Gamma}_1^*(q^2, p^2)$$

$$\begin{array}{l} \lambda_{i\alpha\mu\nu}(q,r,p) = \lim\limits_{p^2 \to q^2} \overline{\lambda}_{i\alpha\mu\nu}(q,r,p) = \lim\limits_{p^2 \to q^2} \overline{\lambda}_{i\alpha\mu\nu}^*(q,r,p) \\ \mathrm{i=1,2} \end{array}$$





$$L_{
m sg}(q^2)=\lim_{p^2 o 0}\overline{\Gamma}_1^*(q^2,p^2)$$

Specializing for the symmetric case:
$$\begin{cases} \overline{\Gamma}_1^{\rm sym}(q^2) = \lim_{p^2 \to q^2} \overline{\Gamma}_1^*(q^2, p^2) \\ \\ \overline{\Gamma}_2^{\rm sym}(q^2) = \lim_{p^2 \to q^2} \overline{\Gamma}_2(q^2, p^2) \end{cases}$$

Specializing for the soft-gluon case:

$$L_{
m sg}(q^2) = \lim_{p^2
ightarrow 0} \overline{\Gamma}_1^*(q^2,p^2)$$

We have found that $\overline{\Gamma}_3^{\star}$ is compatible with zero except near the soft-gluon limit and at large momenta

Specializing for the soft-gluon case:

$$L_{
m sg}(q^2) = \lim_{p^2 o 0} \overline{\Gamma}_1^*(q^2, p^2)$$

We have found that $\overline{\Gamma}_3^{\star}$ is compatible with zero except near the soft-gluon limit and at large momenta; preliminary exploration also indicates that $\widetilde{\Gamma}_{A}$ also is. Thus, the planar degeneracy approximation for the 3-gluon vertex implies:

$$\begin{split} \widetilde{\Gamma}_1^{\star}(q^2, r^2, p^2) &\approx \overline{\Gamma}_1^{\star}(s^2, s^2, 0) \approx L_{\rm sg}(s^2) \\ \overline{\Gamma}_2(q^2, r^2, p^2) &\approx \widetilde{\Gamma}_2\left(\frac{2s^2}{3}, \frac{2s^2}{3}, \frac{2s^2}{3}\right) \approx \overline{\Gamma}_2^{\rm sym}\left(\frac{2s^2}{3}\right) \end{split}$$

And then:

$$\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) \approx L_{\rm sg}\left(s^2\right) \widetilde{\lambda}_1^{\alpha\mu\nu}(q,r,p) + \overline{\Gamma}_2^{\rm sym}\left(\frac{2s^2}{3}\right) \widetilde{\lambda}_2^{\alpha\mu\nu}(q,r,p)$$

Specializing for the symmetric case:
$$\begin{cases} \overline{\Gamma}_1^{\rm sym}(q^2) = \lim_{p^2 \to q^2} \overline{\Gamma}_1^*(q^2, p^2) \\ \\ \overline{\Gamma}_2^{\rm sym}(q^2) = \lim_{p^2 \to q^2} \overline{\Gamma}_2(q^2, p^2) \end{cases}$$

Specializing for the soft-gluon case:

$$L_{
m sg}(q^2) = \lim_{p^2
ightarrow 0} \overline{\Gamma}_1^*(q^2,p^2)$$

We have found that $\overline{\Gamma}_3^{\star}$ is compatible with zero except near the soft-gluon limit and at large momenta; preliminary exploration also indicates that $\widetilde{\Gamma}_{A}$ also is. Thus, the planar degeneracy approximation for the 3-gluon vertex implies:

$$\begin{split} \widetilde{\Gamma}_1(q^2, r^2, p^2) &\approx \overline{\Gamma}_1(s^2, s^2, 0) \approx L_{\rm sg}(s^2) \\ \overline{\Gamma}_2(q^2, r^2, p^2) &\approx \widetilde{\Gamma}_2\left(\frac{2s^2}{3}, \frac{2s^2}{3}, \frac{2s^2}{3}\right) \approx \overline{\Gamma}_2^{\rm sym}\left(\frac{2s^2}{3}\right) \end{split}$$

And then:

$$\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) \approx L_{\rm sg}\left(s^2\right) \widetilde{\lambda}_1^{\alpha\mu\nu}(q,r,p)$$

Specializing for the soft-gluon case:

$$L_{
m sg}(q^2) = \lim_{p^2
ightarrow 0} \overline{\Gamma}_1^*(q^2,p^2)$$

We have found that $\overline{\Gamma}_3^{\star}$ is compatible with zero except near the soft-gluon limit and at large momenta; preliminary exploration also indicates that $\widetilde{\Gamma}_{A}$ also is. Thus, the planar degeneracy approximation for the 3-gluon vertex implies:

$$\begin{split} \widetilde{\Gamma}_1(q^2, r^2, p^2) &\approx \overline{\Gamma}_1(s^2, s^2, 0) \approx L_{\rm sg}(s^2) \\ \overline{\Gamma}_2(q^2, r^2, p^2) &\approx \widetilde{\Gamma}_2\left(\frac{2s^2}{3}, \frac{2s^2}{3}, \frac{2s^2}{3}\right) \approx \overline{\Gamma}_2^{\rm sym}\left(\frac{2s^2}{3}\right) \end{split}$$

And then:

$$\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) \approx L_{\rm sg}\left(s^2\right) \widetilde{\lambda}_1^{\alpha\mu\nu}(q,r,p)$$

$$\mathcal{I}_{\mathcal{W}}(q^2, r^2, p^2) := \frac{1}{2}(q - r)^{\nu} \delta^{\alpha\mu} \overline{\Gamma}_{\alpha\mu\nu}(q, r, p)$$

Specializing for the symmetric case:
$$\begin{cases} \overline{\Gamma}_1^{\rm sym}(q^2) = \lim_{p^2 \to q^2} \overline{\Gamma}_1^*(q^2, p^2) \\ \\ \overline{\Gamma}_2^{\rm sym}(q^2) = \lim_{p^2 \to q^2} \overline{\Gamma}_2(q^2, p^2) \end{cases}$$

Specializing for the soft-gluon case:

$$L_{
m sg}(q^2) = \lim_{p^2
ightarrow 0} \overline{\Gamma}_1^*(q^2,p^2)$$

We have found that $\overline{\Gamma}_3^{\star}$ is compatible with zero except near the soft-gluon limit and at large momenta; preliminary exploration also indicates that $\widetilde{\Gamma}_{A}$ also is. Thus, the planar degeneracy approximation for the 3-gluon vertex implies:

$$\begin{split} \widetilde{\Gamma}_1^{\star}(q^2, r^2, p^2) &\approx \overline{\Gamma}_1^{\star}(s^2, s^2, 0) \approx L_{\rm sg}(s^2) \\ \overline{\Gamma}_2(q^2, r^2, p^2) &\approx \widetilde{\Gamma}_2\left(\frac{2s^2}{3}, \frac{2s^2}{3}, \frac{2s^2}{3}\right) \approx \overline{\Gamma}_2^{\rm sym}\left(\frac{2s^2}{3}\right) \end{split}$$

And then:

$$\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) \approx L_{\rm sg}\left(s^2\right) \widetilde{\lambda}_1^{\alpha\mu\nu}(q,r,p)$$

$$\mathcal{I}_{W}(q^{2}, r^{2}, p^{2}) \approx \mathcal{I}_{W}^{0}(q^{2}, r^{2}, p^{2}) L_{sg}(s^{2})$$

Specializing for the symmetric case:
$$\begin{cases} \overline{\Gamma}_1^{\rm sym}(q^2) = \lim_{p^2 \to q^2} \overline{\Gamma}_1^*(q^2, p^2) \\ \\ \overline{\Gamma}_2^{\rm sym}(q^2) = \lim_{p^2 \to q^2} \overline{\Gamma}_2(q^2, p^2) \end{cases}$$

Specializing for the soft-gluon case:

$$L_{
m sg}(q^2) = \lim_{p^2 o 0} \overline{\Gamma}_1^*(q^2, p^2)$$

We have found that $\overline{\Gamma}_3^{\star}$ is compatible with zero except near the soft-gluon limit and at large momenta; preliminary exploration also indicates that $\widetilde{\Gamma}_{A}$ also is. Thus, the planar degeneracy approximation for the 3-gluon vertex implies:

$$\widetilde{\Gamma}_1^{\star}(q^2, r^2, p^2) \approx \overline{\Gamma}_1^{\star}(s^2, s^2, 0) \approx L_{\text{sg}}(s^2)$$

$$\overline{\Gamma}_2(q^2, r^2, p^2) \approx \widetilde{\Gamma}_2\left(\frac{2s^2}{3}, \frac{2s^2}{3}, \frac{2s^2}{3}\right) \approx \overline{\Gamma}_2^{\text{sym}}\left(\frac{2s^2}{3}\right)$$

And then:

$$\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) \approx L_{\rm sg}\left(s^2\right) \widetilde{\lambda}_1^{\alpha\mu\nu}(q,r,p)$$

$$\mathcal{I}_{\mathcal{W}}(q^2, r^2, p^2) \approx \mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) L_{\text{sg}}(s^2)$$

$$\mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) = \frac{1}{2p^2q^2r^2} \left[4q^2r^2 - \left(p^2 - q^2 - r^2\right)^2 \right]$$

$$\times \left[3q^2r^2 - \frac{1}{4} \left(r^2 - q^2 - p^2\right) \left(q^2 - r^2 - p^2\right) \right]$$

Specializing for the symmetric case:

$$\overline{\Gamma}_{1}^{\text{sym}}(q^{2}) = \lim_{p^{2} \to q^{2}} \overline{\Gamma}_{1}^{*}(q^{2}, p^{2})$$

$$\overline{\Gamma}_{2}^{\text{sym}}(q^{2}) = \lim_{p^{2} \to q^{2}} \overline{\Gamma}_{2}(q^{2}, p^{2})$$

Specializing for the soft-gluon case:

$$L_{
m sg}(q^2) = \lim_{p^2
ightarrow 0} \overline{\Gamma}_1^*(q^2,p^2)$$

We have found that $\overline{\Gamma}_3^*$ is compatible with zero except near the soft-gluon limit and at large momenta; preliminary exploration also indicates that $\widetilde{\Gamma}_4$ also is. Thus, the **planar degeneracy approximation** for the 3-gluon vertex implies:

$$\begin{split} &\widetilde{\Gamma}_1^{\star}(q^2,r^2,p^2) \approx \overline{\Gamma}_1^{\star}(s^2,s^2,0) \approx L_{\rm sg}(s^2) \\ &\overline{\Gamma}_2(q^2,r^2,p^2) \approx \widetilde{\Gamma}_2\left(\frac{2s^2}{3},\frac{2s^2}{3},\frac{2s^2}{3}\right) \approx \overline{\Gamma}_2^{\rm sym}\left(\frac{2s^2}{3}\right) \end{split}$$

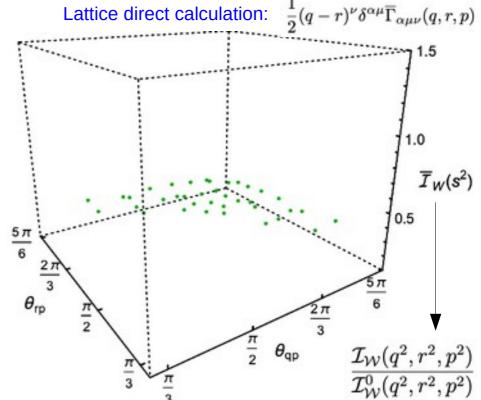
And then:

$$\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) \approx L_{\rm sg}(s^2) \widetilde{\lambda}_1^{\alpha\mu\nu}(q,r,p)$$

$$\mathcal{I}_{\mathcal{W}}(q^2, r^2, p^2) \approx \mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) L_{\text{sg}}(s^2)$$

$$\mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) = \frac{1}{2p^2q^2r^2} \left[4q^2r^2 - \left(p^2 - q^2 - r^2\right)^2 \right]$$

$$\times \left[3q^2r^2 - \frac{1}{4} \left(r^2 - q^2 - p^2\right) \left(q^2 - r^2 - p^2\right) \right]$$



Specializing for the symmetric case:

$$\overline{\Gamma}_{1}^{\text{sym}}(q^{2}) = \lim_{p^{2} \to q^{2}} \overline{\Gamma}_{1}^{*}(q^{2}, p^{2})$$

$$\overline{\Gamma}_{2}^{\text{sym}}(q^{2}) = \lim_{p^{2} \to q^{2}} \overline{\Gamma}_{2}(q^{2}, p^{2})$$

Specializing for the soft-gluon case:

$$L_{
m sg}(q^2) = \lim_{p^2 o 0} \overline{\Gamma}_1^*(q^2, p^2)$$

We have found that $\overline{\Gamma}_3^*$ is compatible with zero except near the soft-gluon limit and at large momenta; preliminary exploration also indicates that $\widetilde{\Gamma}_4$ also is. Thus, the **planar degeneracy approximation** for the 3-gluon vertex implies:

$$\begin{split} &\widetilde{\Gamma}_1^{\star}(q^2,r^2,p^2) \approx \overline{\Gamma}_1^{\star}(s^2,s^2,0) \approx L_{\rm sg}(s^2) \\ &\overline{\Gamma}_2(q^2,r^2,p^2) \approx \widetilde{\Gamma}_2\left(\frac{2s^2}{3},\frac{2s^2}{3},\frac{2s^2}{3}\right) \approx \overline{\Gamma}_2^{\rm sym}\left(\frac{2s^2}{3}\right) \end{split}$$

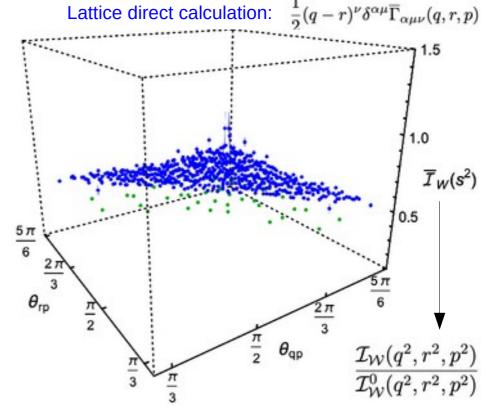
And then:

$$\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) \approx L_{\rm sg}\left(s^2\right) \widetilde{\lambda}_1^{\alpha\mu\nu}(q,r,p)$$

$$\mathcal{I}_{\mathcal{W}}(q^2, r^2, p^2) \approx \mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) L_{\text{sg}}\left(s^2\right)$$

$$\mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) = \frac{1}{2p^2q^2r^2} \left[4q^2r^2 - \left(p^2 - q^2 - r^2\right)^2\right]$$

$$\times \left[3q^2r^2 - \frac{1}{4}\left(r^2 - q^2 - p^2\right)\left(q^2 - r^2 - p^2\right)\right]$$



Specializing for the symmetric case:

$$\overline{\Gamma}_{1}^{\text{sym}}(q^{2}) = \lim_{p^{2} \to q^{2}} \overline{\Gamma}_{1}^{*}(q^{2}, p^{2})$$

$$\overline{\Gamma}_{2}^{\text{sym}}(q^{2}) = \lim_{p^{2} \to q^{2}} \overline{\Gamma}_{2}(q^{2}, p^{2})$$

Specializing for the soft-gluon case:

$$L_{
m sg}(q^2) = \lim_{p^2
ightarrow 0} \overline{\Gamma}_1^*(q^2,p^2)$$

We have found that $\overline{\Gamma}_3^*$ is compatible with zero except near the soft-gluon limit and at large momenta; preliminary exploration also indicates that $\widetilde{\Gamma}_4$ also is. Thus, the **planar degeneracy approximation**

for the 3-gluon vertex implies:

$$\begin{split} \widetilde{\Gamma}_1^{\star}(q^2, r^2, p^2) &\approx \overline{\Gamma}_1^{\star}(s^2, s^2, 0) \approx L_{\rm sg}(s^2) \\ \overline{\Gamma}_2(q^2, r^2, p^2) &\approx \widetilde{\Gamma}_2\left(\frac{2s^2}{3}, \frac{2s^2}{3}, \frac{2s^2}{3}\right) \approx \overline{\Gamma}_2^{\rm sym}\left(\frac{2s^2}{3}\right) \end{split}$$

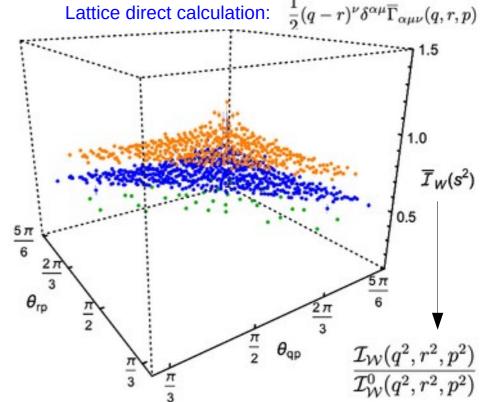
And then:

$$\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) \approx L_{\rm sg}(s^2) \widetilde{\lambda}_1^{\alpha\mu\nu}(q,r,p)$$

$$\mathcal{I}_{\mathcal{W}}(q^2, r^2, p^2) \approx \mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) L_{\text{sg}}(s^2)$$

$$\mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) = \frac{1}{2p^2q^2r^2} \left[4q^2r^2 - \left(p^2 - q^2 - r^2\right)^2 \right]$$

$$\times \left[3q^2r^2 - \frac{1}{4} \left(r^2 - q^2 - p^2\right) \left(q^2 - r^2 - p^2\right) \right]$$



Specializing for the symmetric case:

$$\overline{\Gamma}_{1}^{\text{sym}}(q^{2}) = \lim_{p^{2} \to q^{2}} \overline{\Gamma}_{1}^{*}(q^{2}, p^{2})$$

$$\overline{\Gamma}_{2}^{\text{sym}}(q^{2}) = \lim_{p^{2} \to q^{2}} \overline{\Gamma}_{2}(q^{2}, p^{2})$$

Specializing for the soft-gluon case:

$$L_{
m sg}(q^2) = \lim_{p^2
ightarrow 0} \overline{\Gamma}_1^*(q^2,p^2)$$

We have found that $\overline{\Gamma}_3^*$ is compatible with zero except near the soft-gluon limit and at large momenta; preliminary exploration also indicates that $\widetilde{\Gamma}_4$ also is. Thus, the **planar degeneracy approximation**

for the 3-gluon vertex implies:

$$\begin{split} \widetilde{\Gamma}_1^{\star}(q^2, r^2, p^2) &\approx \overline{\Gamma}_1^{\star}(s^2, s^2, 0) \approx L_{\rm sg}(s^2) \\ \overline{\Gamma}_2(q^2, r^2, p^2) &\approx \widetilde{\Gamma}_2\left(\frac{2s^2}{3}, \frac{2s^2}{3}, \frac{2s^2}{3}\right) \approx \overline{\Gamma}_2^{\rm sym}\left(\frac{2s^2}{3}\right) \end{split}$$

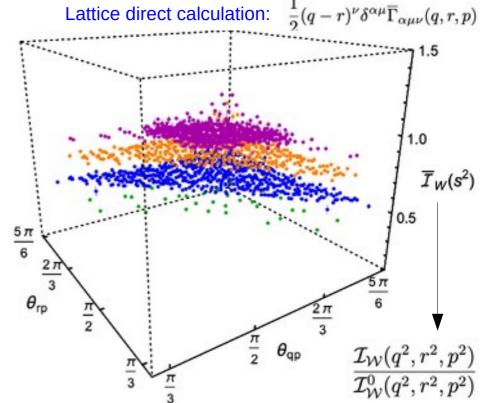
And then:

$$\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) \approx L_{\rm sg}\left(s^2\right) \widetilde{\lambda}_1^{\alpha\mu\nu}(q,r,p)$$

$$\mathcal{I}_{\mathcal{W}}(q^2, r^2, p^2) \approx \mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) L_{\text{sg}}(s^2)$$

$$\mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) = \frac{1}{2p^2q^2r^2} \left[4q^2r^2 - \left(p^2 - q^2 - r^2\right)^2 \right]$$

$$\times \left[3q^2r^2 - \frac{1}{4} \left(r^2 - q^2 - p^2\right) \left(q^2 - r^2 - p^2\right) \right]$$



Specializing for the symmetric case:

$$\overline{\Gamma}_{1}^{\text{sym}}(q^{2}) = \lim_{p^{2} \to q^{2}} \overline{\Gamma}_{1}^{*}(q^{2}, p^{2})$$

$$\overline{\Gamma}_{2}^{\text{sym}}(q^{2}) = \lim_{p^{2} \to q^{2}} \overline{\Gamma}_{2}(q^{2}, p^{2})$$

Specializing for the soft-gluon case:

$$L_{
m sg}(q^2) = \lim_{p^2
ightarrow 0} \overline{\Gamma}_1^*(q^2,p^2)$$

We have found that $\overline{\Gamma}_3^*$ is compatible with zero except near the soft-gluon limit and at large momenta; preliminary exploration also indicates that $\widetilde{\Gamma}_4$ also is. Thus, the **planar degeneracy approximation**

for the 3-gluon vertex implies:

$$\widetilde{\Gamma}_1^{\star}(q^2, r^2, p^2) \approx \overline{\Gamma}_1^{\star}(s^2, s^2, 0) \approx L_{\text{sg}}(s^2)$$

$$\overline{\Gamma}_2(q^2, r^2, p^2) \approx \widetilde{\Gamma}_2\left(\frac{2s^2}{3}, \frac{2s^2}{3}, \frac{2s^2}{3}\right) \approx \overline{\Gamma}_2^{\text{sym}}\left(\frac{2s^2}{3}\right)$$

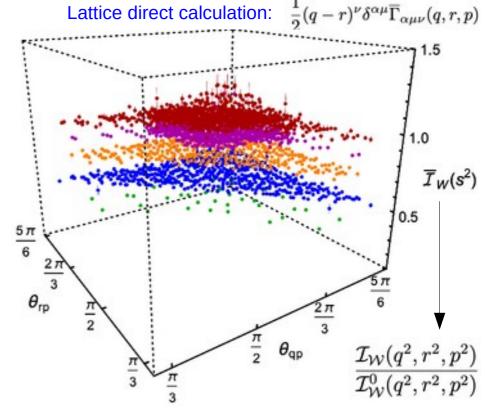
And then:

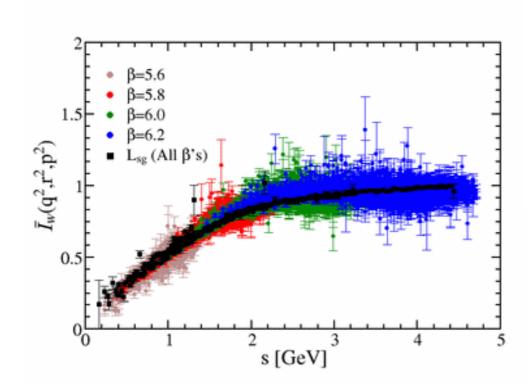
$$\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) \approx L_{\rm sg}\left(s^2\right) \widetilde{\lambda}_1^{\alpha\mu\nu}(q,r,p)$$

$$\mathcal{I}_{\mathcal{W}}(q^2, r^2, p^2) \approx \mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) L_{\text{sg}}(s^2)$$

$$\mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) = \frac{1}{2p^2q^2r^2} \left[4q^2r^2 - \left(p^2 - q^2 - r^2\right)^2 \right]$$

$$\times \left[3q^2r^2 - \frac{1}{4} \left(r^2 - q^2 - p^2\right) \left(q^2 - r^2 - p^2\right) \right]$$



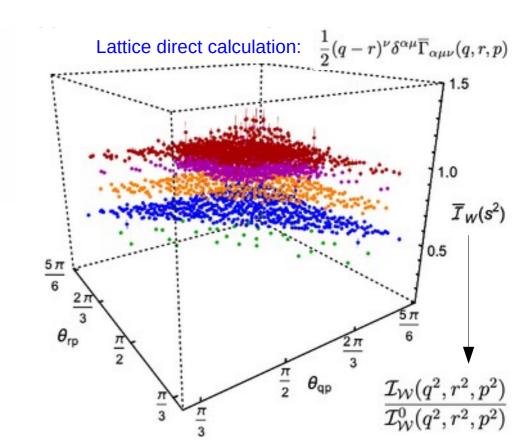


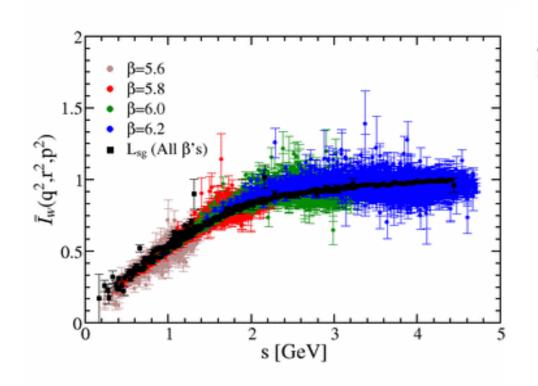
 $\overline{\Gamma}^{\alpha\mu\nu}(q,r,p) \approx L_{\rm sg}\left(s^2\right) \widetilde{\lambda}_1^{\alpha\mu\nu}(q,r,p)$

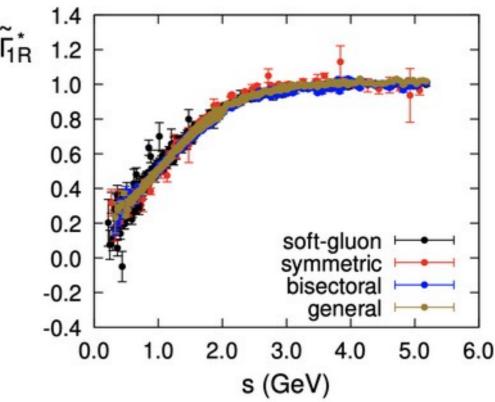
$$\mathcal{I}_{\mathcal{W}}(q^2, r^2, p^2) \approx \mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) L_{\text{sg}}(s^2)$$

$$\mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) = \frac{1}{2p^2q^2r^2} \left[4q^2r^2 - \left(p^2 - q^2 - r^2\right)^2 \right]$$

$$\times \left[3q^2r^2 - \frac{1}{4} \left(r^2 - q^2 - p^2\right) \left(q^2 - r^2 - p^2\right) \right]$$







$$\overline{\Gamma}^{lpha\mu
u}(q,r,p)pprox L_{\mathrm{sg}}\left(s^{2}
ight)\widetilde{\lambda}_{1}^{lpha\mu
u}(q,r,p)$$

Concerning the kernel for the displacement function:

$$\mathcal{I}_{\mathcal{W}}(q^2, r^2, p^2) \approx \mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) L_{\text{sg}}(s^2)$$

$$\mathcal{I}_{\mathcal{W}}^0(q^2, r^2, p^2) = \frac{1}{2p^2q^2r^2} \left[4q^2r^2 - \left(p^2 - q^2 - r^2\right)^2 \right]$$

$$\times \left[3q^2r^2 - \frac{1}{4} \left(r^2 - q^2 - p^2\right) \left(q^2 - r^2 - p^2\right) \right]$$

Averaging over all kinematic configurations sharing the same s^2 , a smoothly behaving curve fully agreeing with $L_{\rm sg}$ is left, both strongly supporting planar degeneracy and greatly improving the statistics for the determination of this latter form factor.

Assuming multiplicative renormalizability

$$\Delta_{R}(q^{2}) = \lim_{a \to 0} Z_{A}^{-1}(a) \Delta(q^{2}; a)$$

$$\mathcal{G}_{R\alpha\mu\nu}(q, r, p) = \lim_{a \to 0} Z_{A}^{-3/2}(a) \mathcal{G}_{\alpha\mu\nu}(q, r, p; a)$$

$$\widetilde{\Gamma}_{iR}^*(q^2, r^2, p^2) = \lim_{a \to 0} Z_3(a) \widetilde{\Gamma}_i^*(q^2, r^2, p^2; a)$$

$$\mathcal{G}_{\alpha\mu\nu}(q, r, p) = g \overline{\Gamma}_{\alpha\mu\nu}(q, r, p) \Delta(q^2) \Delta(r^2) \Delta(p^2)$$

$$g_R = \lim_{a \to 0} Z_A^{3/2}(a) Z_3^{-1}(a) g(a)$$

Assuming multiplicative renormalizability and applying **MOM** prescription

$$\Delta_{R}(q^{2}) = \lim_{a \to 0} Z_{A}^{-1}(a) \Delta(q^{2}; a) \longrightarrow Z_{A}(a^{2}) = \zeta^{2} \Delta(\zeta^{2}; a)$$

$$\mathcal{G}_{R\alpha\mu\nu}(q, r, p) = \lim_{a \to 0} Z_{A}^{-3/2}(a) \mathcal{G}_{\alpha\mu\nu}(q, r, p; a)$$

$$\widetilde{\Gamma}_{iR}^{*}(q^{2}, r^{2}, p^{2}) = \lim_{a \to 0} Z_{3}(a) \widetilde{\Gamma}_{i}^{*}(q^{2}, r^{2}, p^{2}; a)$$

$$\lim_{a \to 0} Z_{3}^{k(\zeta)}(a) \widetilde{\Gamma}_{1}^{*}(q^{2}, r^{2}, p^{2}; a) \Big|_{k(\zeta)} = 1$$

$$k(\zeta) \equiv \{\zeta^{2}, \theta_{qp}, \theta_{rp}\}$$

$$g_{R} = \lim_{a \to 0} Z_{A}^{3/2}(a) Z_{3}^{-1}(a) g(a)$$

Assuming multiplicative renormalizability and applying **MOM** prescription

$$\Delta_{R}(q^{2}) = \lim_{a \to 0} Z_{A}^{-1}(a) \Delta(q^{2}; a) \longrightarrow Z_{A}(a^{2}) = \zeta^{2} \Delta(\zeta^{2}; a)$$

$$\mathcal{G}_{R\alpha\mu\nu}(q, r, p) = \lim_{a \to 0} Z_{A}^{-3/2}(a) \mathcal{G}_{\alpha\mu\nu}(q, r, p; a)$$

$$\begin{split} \widetilde{\Gamma}_{iR}^{*}(q^{2},r^{2},p^{2}) &= \lim_{a \to 0} Z_{3}(a) \widetilde{\Gamma}_{i}^{*}(q^{2},r^{2},p^{2};a) \\ \mathcal{G}_{\alpha\mu\nu}(q,r,p) &= g \overline{\Gamma}_{\alpha\mu\nu}(q,r,p) \Delta(q^{2}) \Delta(r^{2}) \Delta(p^{2}) \\ g_{R} &= \lim_{a \to 0} Z_{A}^{3/2}(a) Z_{3}^{-1}(a) \, g(a) \\ \\ \widetilde{\Gamma}_{iRk(\zeta)}^{*}(q^{2},r^{2},p^{2}) &= \lim_{a \to 0} \frac{\widetilde{\Gamma}_{i}^{*}(q^{2},r^{2},p^{2};a)}{\widetilde{\Gamma}_{1}^{*}(q^{2},r^{2},p^{2};a) \Big|_{k(\zeta)}} \\ g_{Rk}(\zeta^{2}) &= \lim_{a \to 0} \zeta^{3} \Delta^{3/2}(\zeta^{2};a) \, \widetilde{\Gamma}_{1}^{*}(q^{2},r^{2},p^{2};a) \Big|_{k(\zeta)}} g(a) \end{split}$$

Assuming multiplicative renormalizability and applying MOM prescription

$$\Delta_{R}(q^{2}) = \lim_{a \to 0} Z_{A}^{-1}(a) \Delta(q^{2}; a) \longrightarrow Z_{A}(a^{2}) = \zeta^{2} \Delta(\zeta^{2}; a)$$

$$\mathcal{G}_{R\alpha\mu\nu}(q, r, p) = \lim_{a \to 0} Z_{A}^{-3/2}(a) \mathcal{G}_{\alpha\mu\nu}(q, r, p; a)$$

S-diddit vertex
$$\widetilde{\Gamma}_{iR}^*(q^2, r^2, p^2) = \lim_{a \to 0} Z_3(a) \widetilde{\Gamma}_i^*(q^2, r^2, p^2; a)$$

$$\lim_{a \to 0} Z_3^{k(\zeta)}(a) \ \widetilde{\Gamma}_1^*(q^2, r^2, p^2; a) \Big|_{\mathbf{k}(\zeta)} = 1$$

$$\mathbf{k}(\zeta) \equiv \{\zeta^2, \theta_{qp}, \theta_{rp}\}$$

$$g_R = \lim_{a \to 0} Z_A^{3/2}(a) Z_3^{-1}(a) \ g(a)$$

$$\left\{ \widetilde{\Gamma}_{iR\mathbf{k}(\zeta)}^*(q^2, r^2, p^2) = \lim_{a \to 0} \frac{\widetilde{\Gamma}_i^*(q^2, r^2, p^2; a)}{\widetilde{\Gamma}_1^*(q^2, r^2, p^2; a)} \Big|_{\mathbf{k}(\zeta)} \right.$$

$$g_{R\mathbf{k}}(\zeta^2) = \lim_{a \to 0} \zeta^3 \Delta^{3/2}(\zeta^2; a) \ \widetilde{\Gamma}_1^*(q^2, r^2, p^2; a) \Big|_{\mathbf{k}(\zeta)} g(a)$$

$$g_{R\mathbf{k}}(\zeta^2) = \frac{\widetilde{\Gamma}_1^*(q^2, r^2, p^2; a)}{\overline{\Gamma}_1^*(q^2, r^2, p^2; a)} \Big|_{\mathbf{k}(\zeta)} g(a)$$

Assuming multiplicative renormalizability and applying **MOM** prescription

$$\Delta_{R}(q^{2}) = \lim_{a \to 0} Z_{A}^{-1}(a) \Delta(q^{2}; a) \longrightarrow Z_{A}(a^{2}) = \zeta^{2} \Delta(\zeta^{2}; a)$$

$$\mathcal{G}_{R\alpha\mu\nu}(q, r, p) = \lim_{a \to 0} Z_{A}^{-3/2}(a) \mathcal{G}_{\alpha\mu\nu}(q, r, p; a)$$

$$\widetilde{\Gamma}_{iR}^{*}(q^{2}, r^{2}, p^{2}) = \lim_{a \to 0} Z_{3}(a) \widetilde{\Gamma}_{i}^{*}(q^{2}, r^{2}, p^{2}; a)$$

$$\mathcal{G}_{\alpha\mu\nu}(q, r, p) = g\overline{\Gamma}_{\alpha\mu\nu}(q, r, p)\Delta(q^{2})\Delta(r^{2})\Delta(p^{2})$$

$$g_{R} = \lim_{a \to 0} Z_{A}^{3/2}(a) Z_{3}^{-1}(a) g(a)$$

$$\widetilde{\Gamma}_{iRk(\zeta)}^{*}(q^{2}, r^{2}, p^{2}) = \lim_{a \to 0} \frac{\widetilde{\Gamma}_{i}^{*}(q^{2}, r^{2}, p^{2}; a)}{\widetilde{\Gamma}_{1}^{*}(q^{2}, r^{2}, p^{2}; a)\Big|_{k(\zeta)}}$$

$$g_{Rk}(\zeta^{2}) = \lim_{a \to 0} \zeta^{3} \Delta^{3/2}(\zeta^{2}; a) \widetilde{\Gamma}_{1}^{*}(q^{2}, r^{2}, p^{2}; a)\Big|_{k(\zeta)} g(a)$$

$$g_{Rk}(\zeta^{2}) = \frac{\widetilde{\Gamma}_{1}^{*}(q^{2}, r^{2}, p^{2}; a)\Big|_{k(\zeta)}}{\overline{\Gamma}^{sg}(\zeta^{2}; a)} g_{Rs}(\zeta^{2})$$

$$\lim_{a\to 0} Z_3^{k(\zeta)}(a) \ \widetilde{\Gamma}_1^*(q^2,r^2,p^2;a) \Big|_{\mathbf{k}(\zeta)} = 1$$

$$\mathbf{k}(\zeta) \equiv \{\zeta^2,\theta_{qp},\theta_{rp}\}$$

$$0.8$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.0$$

$$0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6$$

$$0 \ \mathsf{s}(\mathsf{GeV})$$

Summary

- The **3-gluon vertex**, triggered by the non-perturbative nature of QCD, contains a key ingredient for the activation of **Schwinger mechanism**, responsible for the gluon mass generation. Such an ingredient is made crucially manifest by analysing the **STId** involving the 3-gluon vertex, through the so-called **displacement function**.
- > To perform this analysis, the required piece can be directly accessed from lattice QCD calculations: the **transversely projected 3-gluon vertex**.
- We have expanded the **trasversely projected 3-gluon vertex** by using a basis for which any of its elements satisfies the **Bose symmetry**, thus obtaining form factors that can only depend on **Bose-symmetric** combinations of momenta. Such form factors, particularly the one behaving as the tree-level one, are seen to depend basically on $s^2 = \frac{1}{2}(q^2 + r^2 + p^2)$ and nothing else. We called this property **planar degeneracy**.
- Owing to planar degeneracy, the transverselly projected 3-gluon vertex can be well and easily approximated, and applied to deliver a compact expression of the kernel involved in the computation of the displacement function. A direct lattice calculation supports the approximation.
- To the extent that **planar degeneracy** works as a reliable approximation, a unique definition of the **3-gluon QCD coupling** can be made, irrespectively of any particular kinematic configuration.

