Dynamical chiral symmetry breaking and quark-antiquark entanglement in the quark condensate

Gastão Krein

Instituto de Física Teórica, São Paulo

QuantFunc2024 Valencia - 03 September 2024

Outline

- 1. Motivation
- 2. Definitions: entanglement entropies
- 3. The QCD vacuum, $S\chi SB$
- 4. Quark-gluon entanglement
- 5. Application quark-antiquark entanglement
- 6. Conclusions & Perspectives

Why bringing quantum information science into QFT, and QCD in particular?

Offers wider perspective on the quantumness of QFT

- Offers wider perspective on the quantumness of QFT
- Builds on quantities different from the traditional correlation functions and scattering amplitudes

- Offers wider perspective on the quantumness of QFT
- Builds on quantities different from the traditional correlation functions and scattering amplitudes
- Brings in new concepts, such as entanglement and complexity

- Offers wider perspective on the quantumness of QFT
- Builds on quantities different from the traditional correlation functions and scattering amplitudes
- Brings in new concepts, such as entanglement and complexity
- Allows characterize matter phases of topological origin

- Offers wider perspective on the quantumness of QFT
- Builds on quantities different from the traditional correlation functions and scattering amplitudes
- Brings in new concepts, such as entanglement and complexity
- Allows characterize matter phases of topological origin
- Opens new simulation paradigms, as analog and digital quantum computing

Prominent QCD phenomena unreachable with current lattice simulations

Finite baryon density

- Finite baryon density
- Real time dynamics

- Finite baryon density
- Real time dynamics
- Time-like hadron form factors

- Finite baryon density
- Real time dynamics
- Time-like hadron form factors
- Quark-gluon fragmentation, inelastic processes

Prominent QCD phenomena unreachable with current lattice simulations

- Finite baryon density
- Real time dynamics
- Time-like hadron form factors
- Quark-gluon fragmentation, inelastic processes

Beyond QCD: quantum gravity, condensed matter, · · ·

High stakes and a lot of hype

Quantum Computing: a future perspective for scientific computing

Quantum Computing

Karl Jansen

Cairns, The XVIth Quark Confinement and the Hadron Spectrum Conference, 19.8.2024

QC for high energy, nuclear and condensed matter physics

Leaving the era of 1+1 dimensional toy models

Today®

- > real time simulation
 - → thermalization
 - → scattering
 - → quenching
- > various spin models
- thermal field theory
- > ..

- > real time simulation
 - → string breaking, formation of bound states
- > collisions, scattering
- non-perturbative renormalization
 - **'** ...

- simulations of heavy ion collisions
- > quark gluon plasma
- nuclear physics
- > multi-Higgs models
- conformal field theories
- **>** ...

⇒ Completely new insight in condensed matter and high energy physics!

Entaglement

- State vector in bipartite Hilbert space: $|\Psi(A,B)\rangle \in \mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_b$
- State operator ("density matrix"): $\hat{\rho}(A, B) = |\Psi(A, B)\rangle\langle\Psi(A, B)|$
- Since $\hat{\rho}(A, B)$ is pure state: $\hat{\rho}(A, B)^2 = \hat{\rho}(A, B)$
- Reduced density matrix: $\hat{\rho}(A) = \operatorname{Tr}_B \hat{\rho}(A, B)$
- If $\hat{\rho}(A)^2 \neq \hat{\rho}(A) \Rightarrow |\Psi(A,B)\rangle (\text{or } \hat{\rho}_A)$ is entangled

— Entanglement entropy: $S = -\text{Tr}\,\hat{\rho}\,\ln\hat{\rho}$

- Entanglement entropy: $S = -\text{Tr }\hat{\rho} \ln \hat{\rho}$
- Purity: $P = \operatorname{Tr} \hat{\rho}^2$

- Entanglement entropy: $S = -\text{Tr}\,\hat{\rho}\,\ln\hat{\rho}$
- Purity: $P = \operatorname{Tr} \hat{\rho}^2$
- Rényi entropies: $S_n = \frac{1}{1-n} \ln \operatorname{Tr} \hat{\rho}^n$

- Entanglement entropy: $S = -\text{Tr }\hat{\rho} \ln \hat{\rho}$
- Purity: $P = \operatorname{Tr} \hat{\rho}^2$
- Rényi entropies: $S_n = \frac{1}{1-n} \ln \operatorname{Tr} \hat{\rho}^n$
- Replica trick*: $S = \lim_{n \to 1} S_n$

- Entanglement entropy: $S = -\text{Tr }\hat{\rho} \ln \hat{\rho}$
- Purity: $P = \operatorname{Tr} \hat{\rho}^2$
- Rényi entropies: $S_n = \frac{1}{1-n} \ln \operatorname{Tr} \hat{\rho}^n$
- Replica trick*: $S = \lim_{n \to 1} S_n$
- * In practice, not always possible to take $n \to 1$.

 Use another representation of the log, maintaining n finite:
 - distributional zeta-function method (Svaiter & Svaiter)

Most studies

Entanglement in real space:

— Entanglement between a spatial region $(V \sim R^d)$ and its complement $(-V)^*$

$$\begin{split} &\rho_V = \mathrm{Tr}_{-V} \rho_{\mathrm{vac}} = \mathrm{Tr}_{-V} \left| \mathrm{vac} \right\rangle \!\! \left\langle \mathrm{vac} \right| \\ &S(V) = \mathrm{Tr}_{-V} \rho_V \ln \rho_V = g_{d-1}(R) \Lambda^{d-1} + \dots + g_1(R) \Lambda + g_0(R) \ln \Lambda + S_0(R) \\ &\Lambda : \mathrm{cutoff}, \quad g_n \sim R^n, \quad S_0 : \mathrm{finite} \end{split}$$

- A motivation: local measurements, spatial correlations readily accessible
- True, BUT finite resolution, measurements up to a momentum scale
- This talk: entanglement in momentum-space, entanglement in the QCD vacuum
- Our aim: get insight, gather knowledge on such "new observables" and perhaps understand better the QCD vacuum

^{*} Casini & Huerta, J. Phys. A 42, 504007 (2009)

Entanglement in the QCD vaccum - $S\chi SB$

- QCD in light-quark sector: approximate $SU_L(3) \otimes SU_R(3)$ symmetry
- Limit of exact symmetry: the symmetry is spontaneously broken (SSB)
- A consequence of SSB: vacuum condensate (quark-mass generation)
- Condensate: quark-antiquark-gluon correlation (entanglement)

Entanglement in the QCD vaccum - $S\chi SB$

- QCD in light-quark sector: approximate $SU_L(3) \otimes SU_R(3)$ symmetry
- Limit of exact symmetry: the symmetry is spontaneously broken (SSB)
- A consequence of SSB: vacuum condensate (quark-mass generation)
- Condensate: quark-antiquark-gluon correlation (entanglement)

How to quantify the quark-antiquark-gluon entanglement in $S\chi SB$ vacuum?

Entanglement in the $S\chi SB$ vacuum

- Construct the SSB vacuum state vector $|\Omega\rangle$
- Compute the corresponding state operator $\hat{\rho} = |\Omega \rangle\!\langle \Omega|$
- Take partial trace over quark (or antiquark and gluon) d.o.f.
- Compute e.g. purity P, a Rényi entropy S_n , or entanglement entropy S

Entanglement in the $S\chi SB$ vacuum

- lacktriangle Construct the SSB vacuum state vector $|\Omega\rangle$
- Compute the corresponding state operator $\hat{\rho} = |\Omega\rangle\langle\Omega|$
- Take partial trace over quark (or antiquark and gluon) d.o.f.
- Compute e.g. purity P, a Rényi entropy S_n , or entanglement entropy S

```
An "easy" way to implement this in practice*:
```

- 1) start with thermal density matrix $\hat{\rho} = e^{-\beta \hat{H}_{QCD}}$, $\beta = 1/T$
- 2) compute partial traces and entropies
- 3) at the end, take $T \rightarrow 0$
- * B. Andrade (IFT, 2020), M. Martins (IFT, 2021), PRD 106, 065024 (2022), PRD 107, 125014 (2023)

Lattice QCD (YM): Buividovich & Polikarpov (2008) · · · Rindlisbacher et al. (2022) · · ·

Talks here: Bulgarelli, Tagliacozzo, Rico

Entanglement in the $S\chi SB$ vacuum

- lacktriangle Construct the SSB vacuum state vector $|\Omega\rangle$
- Compute the corresponding state operator $\hat{\rho} = |\Omega \rangle \! \langle \Omega |$
- Take partial trace over quark (or antiquark and gluon) d.o.f.
- Compute e.g. purity P, a Rényi entropy S_n , or entanglement entropy S

```
An "easy" way to implement this in practice*:
```

- 1) start with thermal density matrix $\hat{\rho}=e^{-\beta\hat{H}_{\mathrm{QCD}}},~\beta=1/T$
- 2) compute partial traces and entropies
- 3) at the end, take $T \rightarrow 0$
- * B. Andrade (IFT, 2020), M. Martins (IFT, 2021), PRD 106, 065024 (2022), PRD 107, 125014 (2023)

```
Lattice QCD (YM): Buividovich & Polikarpov (2008) \cdots Rindlisbacher et al. (2022) \cdots
```

Talks here: Bulgarelli, Tagliacozzo, Rico

Here: Coulomb gauge QCD Hamiltonian in continuum

QCD in Coulomb gauge*

$$\begin{split} H_{\text{QCD}} &= H_{\text{q}} + H_{\text{C}} + H_{\text{T}} \\ H_{\text{q}} &= \int d^3x \, \psi^{\dagger}(\boldsymbol{x}) \Big[\boldsymbol{\alpha} \cdot \left(-i \boldsymbol{\nabla} + g t^a \boldsymbol{A}^a(\boldsymbol{x}) \right) + \beta m_0 \Big] \psi(\boldsymbol{x}) \\ H_{\text{C}} &= \frac{g^2}{2} \int d^3x \int d^3y \, J[A]^{-1} \rho^a(\boldsymbol{x}) J[A] \left[(-\hat{\boldsymbol{D}} \cdot \boldsymbol{\partial})^{-1} (-\hat{\boldsymbol{\partial}}^2) (-\hat{\boldsymbol{D}} \cdot \boldsymbol{\partial})^{-1} \right]^{ab} (\boldsymbol{x}, \boldsymbol{y}) \, \rho^b(\boldsymbol{y}) \\ H_{\text{T}} &= \frac{1}{2} \int d^3x \, \left(J^{-1}[A] \boldsymbol{\Pi}^a(\boldsymbol{x}) \cdot J[A] \boldsymbol{\Pi}^a(\boldsymbol{x}) + \boldsymbol{B}^a(\boldsymbol{x}) \cdot \boldsymbol{B}^a(\boldsymbol{x}) \right) \\ J[A] &= \text{Det}(-\hat{\boldsymbol{D}} \cdot \boldsymbol{\partial}), \quad \boldsymbol{\Pi}^a = -\boldsymbol{E}^a, \quad \hat{\boldsymbol{D}} = \boldsymbol{\partial} + g \boldsymbol{A} \\ \rho^a(\boldsymbol{x}) &= f^{abc} \boldsymbol{A}^b(\boldsymbol{x}) \cdot \boldsymbol{\Pi}^c(\boldsymbol{x}) + \rho^a_m(\boldsymbol{x}), \qquad \rho^a_m(\boldsymbol{x}) = \psi^{\dagger}(\boldsymbol{x}) t^a \psi(\boldsymbol{x}) \end{split}$$

^{*} H. Reinhardt et al. Adv. High Energy Phys. 2018, 2312498

Variational approach*

Variational vacuum state:

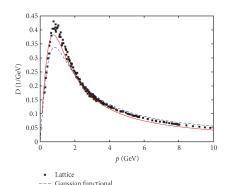
$$|\Omega\rangle = \mathcal{N} e^{-\hat{\Phi}(\psi, \mathbf{A})} |0\rangle$$

$$\begin{split} \hat{\Phi}(\psi,A) &= \int d^3x_1 d^3x_2 \left[\hat{\psi}^{\dagger}(\boldsymbol{x}_1) K(\boldsymbol{x}_1,\boldsymbol{x}_2,\boldsymbol{A}) \, \hat{\psi}(\boldsymbol{x}_2) + \frac{1}{2} \omega_{ij}^{ab}(\boldsymbol{x}_1,\boldsymbol{x}_2) \hat{A}_i^a(\boldsymbol{x}_1) \hat{A}_j^b(\boldsymbol{x}_2) \right] \\ &+ \frac{1}{3!} \int d^3x_1 d^3x_2 d^3x_3 \, u_{ijk}^{abc}(\boldsymbol{x}_1,\boldsymbol{x}_2,\boldsymbol{x}_3) \, \hat{A}_i^a(\boldsymbol{x}_1) \hat{A}_j^b(\boldsymbol{x}_2) \hat{A}_j^c(\boldsymbol{x}_3) \\ &+ \frac{1}{4!} \int d^3x_1 d^3x_2 d^3x_3 d^3x_4 \, v_{ijkl}^{abcd}(\boldsymbol{x}_1,\boldsymbol{x}_2,\boldsymbol{x}_3,\boldsymbol{x}_4) \, \hat{A}_i^a(\boldsymbol{x}_1) \hat{A}_j^b(\boldsymbol{x}_2) \hat{A}_k^c(\boldsymbol{x}_3) \hat{A}_l^d(\boldsymbol{x}_4) \end{split}$$

Ansätze for K, ω , u, and v determine them by minimizing the vacuum energy (gap equations): $E_{\rm vac} = \langle \Omega | \hat{H}_{\rm OCD} | \Omega \rangle$

* H. Reinhardt et al. Adv. High Energy Phys. 2018, 2312498

Variational approach - gluon propagator*



- Non-Gaussian functional

SU(2) static gluon propagator

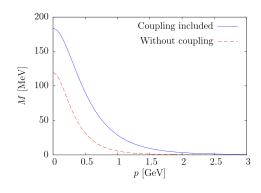
$$D_{ij}^{ab}(\boldsymbol{x}-\boldsymbol{y}) = \langle \Omega | A_i^a(\boldsymbol{x}) A_j^b(\boldsymbol{y}) | \Omega \rangle$$

Well fitted by Gribov formula:

$$D(\mathbf{p}^2) = \frac{p^2}{p^4 + M^4}$$
$$M \simeq 880 \text{ MeV}$$

^{*} H. Reinhardt et al. Adv. High Energy Phys. 2018, 2312498

Variational approach - quark propagator*



Coupling: gluons in the vacuum functional

Static quark propagator

$$S_{\alpha\beta}^{ij}(\boldsymbol{x}\!-\!\boldsymbol{y}) = \frac{1}{2} \langle \Omega | [\psi_{\alpha}^{i}(\boldsymbol{x}), \psi_{\beta}^{j}(\boldsymbol{y})] | \Omega \rangle$$

Quark mass function:

$$S(\mathbf{p}) = \frac{Z(p)}{2\sqrt{\mathbf{p}^2 + M^2(\mathbf{p}^2)}} \left[\boldsymbol{\alpha} \cdot \mathbf{p} + \beta M(p^2) \right]$$

^{*} H. Reinhardt et al. Adv. High Energy Phys. 2018, 2312498

Entanglement: analytical computation, insightful

Model: "Integrate out" the gluons

— Vacuum:

$$|\Omega\rangle = \mathcal{N}\,e^{-\hat{\Phi}(\psi)}|0\rangle \qquad \text{with} \qquad \hat{\Phi}(\psi) = \sum_{\boldsymbol{p},s} s\,\tan\theta(\boldsymbol{p})\,\hat{q}^\dagger(\boldsymbol{p},s)\hat{q}^\dagger(-\boldsymbol{p},s)$$

— Quark field operator $\hat{\psi}_{cf}(\boldsymbol{x})$:

$$\hat{\psi}(\boldsymbol{x}) = \frac{1}{\sqrt{V}} \sum_{\boldsymbol{p},s} e^{i\boldsymbol{p}\cdot\boldsymbol{x}} \left[u_s(\boldsymbol{p}) \, \hat{q}(\boldsymbol{p},s) + v_s(-\boldsymbol{p}) \, \hat{q}^{\dagger}(-\boldsymbol{p},s) \right]$$

$$= \frac{1}{\sqrt{V}} \sum_{\boldsymbol{p},s} e^{i\boldsymbol{p}\cdot\boldsymbol{x}} \left[U_s(\boldsymbol{p}) \, \hat{Q}(\boldsymbol{p},s) + V_s(-\boldsymbol{p}) \, \hat{\bar{Q}}^{\dagger}(-\boldsymbol{p},s) \right]$$

— Vacua $|0\rangle$ & $|\Omega\rangle$:

$$\hat{q}(\boldsymbol{p},s)|0\rangle = \hat{\bar{q}}^{\dagger}(\boldsymbol{p},s)|0\rangle = 0,$$
 $\hat{Q}(\boldsymbol{p},s)|\Omega\rangle = \hat{\bar{Q}}_{s}^{\dagger}(\boldsymbol{p})|\Omega\rangle = 0$

The spinors & chiral angle

$$\begin{split} u(\boldsymbol{p},s) &= \sqrt{\frac{E_p + m_0}{2E_p}} \begin{pmatrix} 1 \\ \frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}}{E_p + m_0} \end{pmatrix} \chi_s, & v(\boldsymbol{p},s) &= \sqrt{\frac{E_p + m_0}{2E_p}} \begin{pmatrix} \frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}}{E_p + m_0} \\ 1 \end{pmatrix} \chi_s \\ U(\boldsymbol{p},s) &= \sqrt{\frac{\mathcal{E}(\boldsymbol{p}) + M(\boldsymbol{p})}{2\mathcal{E}(\boldsymbol{p})}} \begin{pmatrix} 1 \\ \frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}}{\mathcal{E}(\boldsymbol{p}) + M(\boldsymbol{p})} \end{pmatrix} \chi_s, & V(\boldsymbol{p},s) &= \sqrt{\frac{\mathcal{E}(\boldsymbol{p}) + M(\boldsymbol{p})}{2\mathcal{E}(\boldsymbol{p})}} \begin{pmatrix} \frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}}{\mathcal{E}(\boldsymbol{p}) + M(\boldsymbol{p})} \\ 1 \end{pmatrix} \chi_s \\ E_p &= \sqrt{\boldsymbol{p}^2 + m_0^2}, & \mathcal{E}(\boldsymbol{p}) &= \sqrt{\boldsymbol{p}^2 + M^2(\boldsymbol{p})} \\ \sin 2\theta(\boldsymbol{p}) &= \begin{cases} \frac{M(\boldsymbol{p})}{\mathcal{E}(\boldsymbol{p})} & \text{when } m_0 = 0 \\ \frac{M(\boldsymbol{p}) - m_0}{\mathcal{E}(\boldsymbol{p})} \begin{pmatrix} \frac{\boldsymbol{p}}{E_p} \end{pmatrix} & \text{when } m_0 \neq 0 \end{cases} \end{split}$$

Compute traces: coherent states

—Eigenstates of the annihilation operators

Definition:

$$\hat{q} |z_q\rangle = z_q |z_q\rangle, \qquad |z_q\rangle = e^{z_q \hat{q}^{\dagger}} |0\rangle$$

$$\hat{q} |z_{\bar{q}}\rangle = z_{\bar{q}} |z_{\bar{q}}\rangle, \qquad |z_{\bar{q}}\rangle = e^{z_{\bar{q}}} \hat{q}^{\dagger} |0\rangle$$

Compute traces: coherent states

—Eigenstates of the annihilation operators

Definition:

$$\hat{q} |z_q\rangle = z_q |z_q\rangle, \qquad |z_q\rangle = e^{z_q \hat{q}^{\dagger}} |0\rangle$$

$$\hat{q} |z_{\bar{q}}\rangle = z_{\bar{q}} |z_{\bar{q}}\rangle, \qquad |z_{\bar{q}}\rangle = e^{z_{\bar{q}} \, \hat{q}^{\dagger}} |0\rangle$$

Completeness:

$$\int \mathcal{D}z_q^* \mathcal{D}z_q \, e^{-z_q^* \cdot z_q} \, |z_q\rangle \langle z_q^*| = 1, \qquad \int \mathcal{D}z_{\bar{q}}^* \mathcal{D}z_{\bar{q}} \, e^{-z_{\bar{q}}^* \cdot z_{\bar{q}}} \, |z_{\bar{q}}\rangle \langle z_{\bar{q}}^*| = 1$$

Compute traces: coherent states

—Eigenstates of the annihilation operators

Definition:

$$\hat{q} |z_q\rangle = z_q |z_q\rangle, \qquad |z_q\rangle = e^{z_q \,\hat{q}^\dagger} |0\rangle$$

$$\hat{\bar{q}}\,|z_{\bar{q}}\rangle = z_{\bar{q}}\,|z_{\bar{q}}\rangle, \qquad \quad |z_{\bar{q}}\rangle = e^{z_{\bar{q}}\,\hat{q}^{\dagger}}|0\rangle$$

Completeness:

$$\int \mathcal{D}z_q^* \mathcal{D}z_q \, e^{-z_q^* \cdot z_q} \, |z_q\rangle \langle z_q^*| = 1, \qquad \int \mathcal{D}z_{\bar{q}}^* \mathcal{D}z_{\bar{q}} \, e^{-z_{\bar{q}}^* \cdot z_{\bar{q}}} \, |z_{\bar{q}}\rangle \langle z_{\bar{q}}^*| = 1$$

Partial Trace:

$$\operatorname{Tr}_{\bar{q}} \hat{O}(\hat{q}^{\dagger}, \hat{q}, \hat{q}^{\dagger}, \hat{q}) = \int \mathcal{D}z_{\bar{q}}^{*} \mathcal{D}z_{\bar{q}} \; e^{-z_{\bar{q}}^{*} \cdot z_{\bar{q}}} \left\langle -z_{\bar{q}}^{*} | \hat{O}(\hat{q}^{\dagger}, \hat{q}, \hat{q}^{\dagger}, \hat{q}) | z_{\bar{q}} \right\rangle$$

Reduced vacuum density matrix (quarks)

—Trace $\hat{\rho} = |\Omega\rangle\langle\Omega|$ over antiquarks

Reduced density operator (quarks):

$$\hat{\rho}_{q} = \operatorname{Tr}_{\bar{q}} |\Omega\rangle\langle\Omega| = \mathcal{N}_{q} \int Dz_{\bar{q}}^{*} Dz_{\bar{q}} e^{-z_{\bar{q}}^{*} \cdot z_{\bar{q}}} \langle -z_{\bar{q}}^{*} |\Omega\rangle\langle\Omega|z_{\bar{q}}\rangle$$

$$Dz_{\bar{q}}^*Dz_{\bar{q}} = \prod_{\boldsymbol{p},s} dz_{\bar{q}}^*(\boldsymbol{p},s)dz_{\bar{q}}(\boldsymbol{p},s), \quad z_{\bar{q}}^* \cdot z_{\bar{q}} = \sum_{\boldsymbol{p},s} z_{\bar{q}}^*(\boldsymbol{p},s)z_{\bar{q}}(\boldsymbol{p},s)$$

Reduced vacuum density matrix (quarks)

—Trace $\hat{\rho} = |\Omega\rangle\langle\Omega|$ over antiquarks

Reduced density operator (quarks):

$$\hat{\rho}_{q} = \operatorname{Tr}_{\bar{q}} |\Omega\rangle\langle\Omega| = \mathcal{N}_{q} \int Dz_{\bar{q}}^{*} Dz_{\bar{q}} e^{-z_{\bar{q}}^{*} \cdot z_{\bar{q}}} \langle -z_{\bar{q}}^{*} |\Omega\rangle\langle\Omega| z_{\bar{q}}\rangle$$

$$Dz_{\bar{q}}^*Dz_{\bar{q}} = \prod_{\boldsymbol{p},s} dz_{\bar{q}}^*(\boldsymbol{p},s)dz_{\bar{q}}(\boldsymbol{p},s), \quad z_{\bar{q}}^* \cdot z_{\bar{q}} = \sum_{\boldsymbol{p},s} z_{\bar{q}}^*(\boldsymbol{p},s)z_{\bar{q}}(\boldsymbol{p},s)$$

Matrix element of $\hat{\rho}_q$:

$$\rho_q(z_q^*, z_q') \equiv \langle z_q^* | \hat{\rho}_q | z_q' \rangle = \mathcal{N}_q \exp \left[\sum_{\boldsymbol{p}, s} \tan^2 \theta(\boldsymbol{p}) z_q^*(\boldsymbol{p}, s) z_q'(\boldsymbol{p}, s) \right]$$

$$\mathcal{N}_q^{-1} = \exp\left[2N_cN_f\sum_{\boldsymbol{p}}\log\left(1+\tan^2\theta(\boldsymbol{p})\right)\right]$$

Reduced vacuum density matrix (quarks)

—Trace $\hat{\rho} = |\Omega\rangle\langle\Omega|$ over antiquarks

Reduced density operator (quarks):

$$\hat{\rho}_{q} = \operatorname{Tr}_{\bar{q}} |\Omega\rangle\langle\Omega| = \mathcal{N}_{q} \int Dz_{\bar{q}}^{*} Dz_{\bar{q}} e^{-z_{\bar{q}}^{*} \cdot z_{\bar{q}}} \langle -z_{\bar{q}}^{*} |\Omega\rangle\langle\Omega| z_{\bar{q}}\rangle$$

$$Dz_{\bar{q}}^*Dz_{\bar{q}} = \prod_{\boldsymbol{p},s} dz_{\bar{q}}^*(\boldsymbol{p},s)dz_{\bar{q}}(\boldsymbol{p},s), \quad z_{\bar{q}}^* \cdot z_{\bar{q}} = \sum_{\boldsymbol{p},s} z_{\bar{q}}^*(\boldsymbol{p},s)z_{\bar{q}}(\boldsymbol{p},s)$$

Matrix element of $\hat{\rho}_q$:

$$\rho_q(z_q^*, z_q') \equiv \langle z_q^* | \hat{\rho}_q | z_q' \rangle = \mathcal{N}_q \exp \left[\sum_{\boldsymbol{p}, s} \tan^2 \theta(\boldsymbol{p}) z_q^*(\boldsymbol{p}, s) z_q'(\boldsymbol{p}, s) \right]$$

$$\mathcal{N}_q^{-1} = \exp\left[2N_cN_f\sum_{\boldsymbol{p}}\log\left(1+\tan^2\theta(\boldsymbol{p})\right)\right]$$

Entropies

Rényi entropies:

$$S_n = \frac{1}{1-n} \ln \operatorname{Tr}_q \hat{\rho}_q^n$$

$$= \frac{2N_c N_f}{1-n} V \int \frac{d^3 p}{(2\pi)^3} \left[\ln(1 + \tan^{2n} \theta(p)) - n \log(1 + \tan^2 \theta(p)) \right]$$

Entanglement entropy:

$$S_E = \lim_{n \to 1} S_n$$

$$= -2N_c N_f V \int \frac{d^3 p}{(2\pi)^3} \left[\ln(1 + \tan^2 \theta(p)) - \frac{\tan^2 \theta(p) \ln(\tan^2 \theta(p))}{1 + \tan^2 \theta(p)} \right]$$

First look - NJL model

NJL Hamiltonian:

$$\hat{H} = \int d^3x \left\{ \hat{\psi}^{\dagger}(\boldsymbol{x})(-i\boldsymbol{\alpha} \cdot \boldsymbol{\partial})\hat{\psi}(\boldsymbol{x}) + G\left[(\bar{\psi}(\boldsymbol{x})\psi(\boldsymbol{x}))^2 + (\bar{\psi}(\boldsymbol{x})i\gamma_5\tau^a\psi(\boldsymbol{x}))^2 \right] \right\}$$

Chiral angle: $\tan 2\theta(p) = \frac{M}{p}$

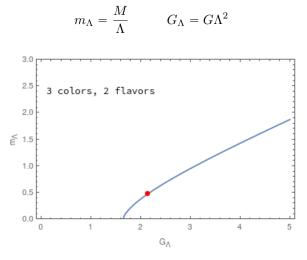
Minimize the vacuum energy: gap equation

$$p \tan 2\theta(\mathbf{p}) = 4GN_c N_f \int \frac{d^3 p}{(2\pi)^3} \sin 2\theta(\mathbf{p}) = \frac{2GN_c N_f}{\pi^2} \int_0^{\Lambda} dp p^2 \frac{M}{\sqrt{p^2 + M^2}} = M$$

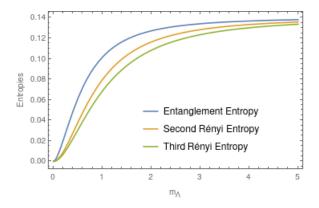
Condensate:

$$\langle \bar{\psi}\psi \rangle = -2N_c N_f \int \frac{d^3 p}{(2\pi)^3} \sin 2\theta(\mathbf{p}) = -2N_c N_f \int \frac{d^3 p}{(2\pi)^3} \frac{M}{\sqrt{\mathbf{p}^2 + M^2}}.$$

First look - NJL model



First look - NJL model



Model - QCD Coulomb gauge Hamiltonian

$$\begin{split} \hat{H} &= \int d^3x \; \hat{\psi}^{\dagger}(\boldsymbol{x}) (-i\boldsymbol{\alpha} \cdot \boldsymbol{\partial} + m_0) \hat{\psi}(\boldsymbol{x}) - \frac{1}{2} \int d^3x d^3y \; \rho_m^a(\boldsymbol{x}) \, V_c(|\boldsymbol{x} - \boldsymbol{y}|) \, \rho_m^a(\boldsymbol{y}) \\ &+ \frac{1}{2} \int d^3x d^3y \; J_i^a(\boldsymbol{x}) \, D^{ij}(\boldsymbol{x} - \boldsymbol{y}) \, J_j^a(\boldsymbol{y}) \\ J_i^a(\boldsymbol{x}) &= \hat{\psi}^{\dagger}(\boldsymbol{x}) t^a \gamma_i \hat{\psi}(\boldsymbol{x}), \qquad D^{ij}(\boldsymbol{x} - \boldsymbol{y}) = \left(\delta^{ij} - \frac{\partial^i \partial^j}{\partial^2} \right) \, D(|\boldsymbol{x} - \boldsymbol{y}|) \end{split}$$

A choice of potentials: fit to lattice data of hyperfine splitting of light hadron masses (LLanes-Estrada et al. Phys. Rev. C, vol. 70, p. 035202, 2004)

$$V_c = V_l + V_s = \frac{8\pi\sigma}{p^4} + \frac{4\pi\alpha(p)}{p^2}, \quad \alpha(p) = \frac{4\pi Z}{\left[\beta \log(c + p^2/\Lambda_{QCD}^2)\right]^{3/2}}$$

$$D(p) = \frac{-4\pi\alpha_T}{(p^2 + m_g^2/4) \ln^{1.42}(\tau + p^2/m_g^2)}$$

$$Z = 5.94, \quad c = 40.68, \quad \beta = 10.08, \quad m_g = 550 \,\text{MeV}, \quad \alpha_T = 0.5, \quad \tau = 1.05$$

Gap equation

One needs to find $\theta(\mathbf{p})$ or, equivalently, $M(\mathbf{p})$:

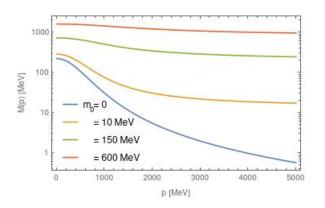
Minimize the vacuum energy $\langle \Omega | \hat{H} | \Omega \rangle$

$$M(\mathbf{p}) = m_0 + \frac{2}{3} \int \frac{d^3k}{(2\pi)^3} \Big[F_1(\mathbf{p}, \mathbf{k}) V_c(|\mathbf{p} - \mathbf{k}|) + 2G_1(\mathbf{p}, \mathbf{k}) D(|\mathbf{p} - \mathbf{k}|) \Big]$$

$$F_1(\mathbf{p}, \mathbf{k}) = \frac{M(\mathbf{k})}{\mathcal{E}(\mathbf{k})} - \frac{M(\mathbf{p})}{\mathcal{E}(\mathbf{k})} \frac{k}{p} \hat{p} \cdot \hat{k}$$

$$G_1(\mathbf{p}, \mathbf{k}) = \frac{M(\mathbf{k})}{\mathcal{E}(\mathbf{k})} + \frac{M(\mathbf{p})}{\mathcal{E}(\mathbf{k})} \frac{k}{p} \frac{(\mathbf{p} \cdot \mathbf{k} - p^2)(\mathbf{p} \cdot \mathbf{k} - k^2)}{pk|\mathbf{p} - \mathbf{k}|^2}$$

Mass function



Generic features:

- 1. SSB dressing in ${\cal M}(p^2)$ large in the infrared (low momenta)
- 2. Relative SSB dressing, $M(p^2)-m_0$, increases with m_0
- 3. BUT $(M(p \sim 0) m_0)/m_0$ gets smaller for heavier quarks.

Entanglement entropy: first lesson

1) In the chiral limit, the EE density is finite, because*:

$$M(p) \sim \frac{1}{p^2 (\ln p^2 / \Lambda_{QCD}^2)^{-\gamma}}, \quad \gamma = 0.84$$

2) Away from the chiral limit, the EE runs, because:

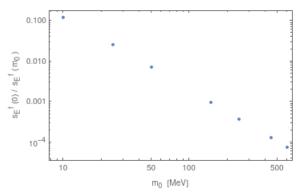
$$M(p^2) \sim \frac{\hat{m}}{(\ln p^2/\Lambda_{\rm QCD}^2)^{\gamma}}$$

* Burgio et al. PRD 86, 014506, lattice QCD in Coulomb gauge

Are these model independent features of QCD?

Entanglement entropy: m_0 dependence

$$s_R^f(m_0) = \frac{s_E^f(0)}{s_0^f(m_0)} \leftarrow \begin{cases} s_E^f(0) & \text{chiral limit} \\ s_0^f(m_0) & \text{explicit chiral breaking} \end{cases}$$



$$S_0^f(m_0)$$
 computed up to $\,p_{\rm max}=2.5\times 10^5$ MeV

Entanglement entropy: second lesson

1) EE grows with explicit symmetry breaking $(m_0 \neq 0)$, because

 $M(p^2)$ increases due to m_0 , not due to the interaction

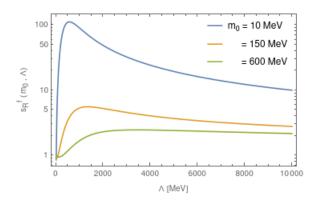
2) Artifact due to definition of $|\Omega\rangle$: $|0\rangle$ includes m_0

For a better assessment of SSB on EE, ratio of EE with and without interaction

Entanglement entropy: dressing effect

Integral for EE up to $p=\Lambda$ and make ratio:

$$s_R^f(m_0,\Lambda) = \frac{s_E^f(m_0,\Lambda)}{s_0^f(m_0,\Lambda)} \leftarrow \begin{cases} s_E^f(m_0,\Lambda) : \text{with interaction} \\ s_0^f(m_0,\Lambda) : \text{no interaction} \end{cases}$$



Entanglement entropy: third lesson

— EE reveals a clear signal of the QCD chiral SSB

— EE integrand reveals quark-antiquark entangling momentum-scale

— Entanglement strength is strongly suppressed by explicit χSB

1. A first calculation of the quark-antiquark entanglement entropy (EE) in the quark condensate

- 1. A first calculation of the quark-antiquark entanglement entropy (EE) in the quark condensate
- 2. In the chiral limit this EE is finite

- 1. A first calculation of the quark-antiquark entanglement entropy (EE) in the quark condensate
- 2. In the chiral limit this EE is finite
- 3. Away from the chiral limit, this EE runs, with a running dictated by the explicit symmetry breaking running of the quark mass function

- 1. A first calculation of the quark-antiquark entanglement entropy (EE) in the quark condensate
- 2. In the chiral limit this EE is finite
- 3. Away from the chiral limit, this EE runs, with a running dictated by the explicit symmetry breaking running of the quark mass function
- 4. Used a model to obtain explicit results

- 1. A first calculation of the quark-antiquark entanglement entropy (EE) in the quark condensate
- 2. In the chiral limit this EE is finite
- 3. Away from the chiral limit, this EE runs, with a running dictated by the explicit symmetry breaking running of the quark mass function
- 4. Used a model to obtain explicit results
- 5. Next: explicit gluon d.o.f. (work with D. Rosa Jr.)

- 1. A first calculation of the quark-antiquark entanglement entropy (EE) in the quark condensate
- 2. In the chiral limit this EE is finite
- 3. Away from the chiral limit, this EE runs, with a running dictated by the explicit symmetry breaking running of the quark mass function
- 4. Used a model to obtain explicit results
- 5. Next: explicit gluon d.o.f. (work with D. Rosa Jr.)
- 6. Role of topological configurations on creating entanglement

- 1. A first calculation of the quark-antiquark entanglement entropy (EE) in the quark condensate
- 2. In the chiral limit this EE is finite
- 3. Away from the chiral limit, this EE runs, with a running dictated by the explicit symmetry breaking running of the quark mass function
- 4. Used a model to obtain explicit results
- 5. Next: explicit gluon d.o.f. (work with D. Rosa Jr.)
- 6. Role of topological configurations on creating entanglement
- 7. Comparisons with lattice QCD simulations, when available

Thank you

Funding

