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Introduction

The static potential gives the dominant contribution between heavy quark and
antiquark at low E

- At T=0 Itis attractive and Coulomb like at small r ( and linearly rising at large r)

At high T, it is a Yukawa-like potential, with screening mass ~ T

J/Psi suppression at high T Matsui and Satz, '86, as bound states melt

=l

(damping instead of melting of bound states)

The potential develops an imaginary part
Laine, Philipsen, Romatschke, Tassler, ‘07




Goal

Push the initial high T computations of the static potential

(computations were carried out only to leading order)

Provide physical motivated forms of the potential V, information that
might be of great help for lattice



CALCULATIONAL METHOD

Potential obtained from the QCD Wilson loop
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V(r) = lim - In[W(t,r)] -

(0.0) ) (t,0)

W(t,r) = - (exp (z'gP / da;ﬂA,,,(x)> )

C

(similar results if we apply standard diagrams in p space)

Heavy quarks with M >> any other scale, unthermalized
. Thermal plasma, at high T - we use the real time formalism of TFT

. Computation carried out in Coulomb gauge; use of dimensional regularization



Leading order potential

Obtained from the time ordered longitudinal gluon propagator, when p << T

In momentum space Cr = (N?-1)/(2N,)
Vilo(p) = 9°Cr G(0, p) E
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Note: when screening is important P~ mp

Im(Vuo) > Re(VHO)

And then narrow resonances cannot exist

Im(Vllo) ~ Re(Vuo) for Pd ~ (mDT)1/3 2/3T

Narrow resonances exist if the typical momentum is semi-hard

mp Lp<LT



Potential beyond LO

Diagrams needed in the computation

T

(a) (b) (c) (d) (€)

We use the Hard Thermal Loop (HTL) effective field theory in the computation

(Braaten and Pisarski, ’92)

When the momentum is soft ~ gT, resumed (and non-local) propagators and vertices have
to be used

But (fortunately!) for semi-hard momentum enormous simplifications arise



HTL effective theory in QED and corrections

HTL physics corresponds to integrate out the scale T

: I1
@ My (l) ~ ¢?T? HFZPQL(Z) ~ 1  for soft momentum

= [ (el (1, 270 ) Bl ot (5 ) )

In QED , corrections to the HTL physics arise from

Stetina, CM, Soto, Carignano. ‘18
- Power corrections: p/T corrections to HTL
Carignano, Carrington, Soto , ‘19

- Two-loop corrections ~

e213—d d _ B
By d*q 1—2ng(q) (P VL,
con ="/ el @ o s

42 [T O
pert:_eT dQvF (N 1 0 FP
£ 167r2/47r PH (v - 0)2 2+’v-8 g



HTL theory in QCD and corrections

Not only the propagators are modified, also effective (non-local) propagators are needed
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Corrections to HTL physics

Diagrams with soft loop momentum (because gluon contribution is then
Bose-enhanced), which are hard to compute as they need HTL are more
important

Power corrections p/T

Two-loop diagrams

For semi-hard momentum the leading order term can be easily computed by
expanding in (m/p)A2 (then one can use free classical propagators!)

and two-loops are subleading
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(b) (c) () (e)

In all the above diagrams p is semi-hard, k the internal momentum

These diagrams are dominated by k ~mp  (use of the HTL effective theory ! )

But these diagrams can be computed in an expansion in k/p and mo /p



Fully expanded potential in momentum space
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For p=qg°T 3<0L<—

this holds up to corrections to the real part of order

3a 3a

And to the imaginary part of order ¢ (g y g

g2
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Keeping the momentum semi-hard: in coordinate space the potential is expected to
be valid only for

rmp <1 KLr’l

Damped approximation: ) 5
keep in the gluon propagators unexpanded factors 1/(p + mD)

which is more realistic for momenta getting close to the soft scale



In the damped approximation

mp = gI'mp



Re[V]/(g°T)

Im[V]/(g>T)
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Comparison with lattice data

Our potential in p space describes the semi-hard scales
The damped approximation allows us to get closertor ~ 1/mp

For scales r << 1/mp we miss the contribution of the soft modes p ~ mo

2 a universal form ~ a polynomial inr (up to logs), as one can expand in the Fc
ipT
(&

We add contributions to the coordinate potential arising from the soft modes

3
Re[Vsott] = C + g°qoT | . |
C adjusts the origin of energies;
We obtain the coefficients by fitting to lattice

Im[Viost] = g°i0T + g°ipr®T?

Potential [1]. Bzavov, Hoying, Kaczmarek, Larsen, Mukherjee, Petreczky, Rothkopf, Weber, 23

Mass spectrum and widths [2] Larsen, Meine, Mukherjee, Petreczky, 20



Use g =1.8 from fit T=0 lattice data; bottom quark mass M = 4676 MeV

Find fitted constants to all available T (solid bands are uncertainties
in the fitting with lattice [1])

(qo, %0, 72) = (0.049, —0.021 + 0.002,0.205 + 0.001) C = 219MeV
K
0 lo T=182 . %
. 200; lo T=352 %‘
3 =
§ -400 - E
> i — 352 -
- 600 | 2
— 203
— 182 T Ce
-800 "¢, / L L ‘ . . 0.05 0.10 0.15 0.20 0.25 0.30
0.10 0.15 0.20 0.25 0.30 r [fm]

r [fm]

The real part of V depends very little on T (like the lattice data)

The imaginary part of the V has big contribution from the soft region



We solve the Schrddinger equation using the real part of the potential and find the binding en

Decay rates are found as
Y [ = —2(ImV)

Fitting coefficients found by fitting with data in [2] (C plays no role ...)

(qo,0,%2) = (0.078 4 0.004, —0.026 + 0.009, 0.053 £ 0.002)

Similar values as with [1], except for that of 29
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Dissociation Temperature

It can be defined as the temperature at which the binding energies equal the decay width

At LO Ty =193 MeV
BLO, with the fit to [1] Ty =151.8 £1.2MeV
BLO, with the fit to [2] Ty = 225 £+ 10 MeV

(due to the different values in fitting coefficient; it suggests a problem with the data)



CONCLUSIONS

We have computed corrections to the LO static potential in QCD in

momentum space , valid in the regime Mmp K< p KL T

We have provided the static potential in configuration space, including
pieces due to soft modes ( which are universal )

Reasonable description of lattice data



