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Introduction
The static potential gives the dominant contribution between heavy quark and 
antiquark  at low E

At T=0     It is attractive and Coulomb like at small r ( and linearly rising at large r)

At high T, it is a Yukawa-like potential, with screening mass ~ T

J/Psi suppression at high T    Matsui and Satz, ’86, as bound states melt  

The potential develops an imaginary part   
 Laine, Philipsen, Romatschke, Tassler, ’07

(damping instead of melting of bound states) 



 Push the initial high T computations of the static potential

(computations were carried out only to leading order )

Provide physical motivated forms of the potential V, information that
might be of great help for lattice 

 

Goal



CALCULATIONAL METHOD
Potential obtained from the QCD Wilson loop

Heavy quarks with M >> any other scale, unthermalized
Thermal plasma, at high T     - we use the real time formalism of TFT

Computation carried out in Coulomb gauge; use of dimensional regularization

(similar results if we apply standard diagrams in p space)



Leading order potential
Obtained from the time ordered longitudinal gluon propagator, when p << T 

In momentum space

Debye mass squared



Note: when screening is important

for

And then narrow resonances cannot exist 

Narrow resonances exist if the typical momentum is semi-hard



Potential beyond LO 
Diagrams needed in the computation

But (fortunately!) for semi-hard momentum enormous simplifications arise

We use the Hard Thermal Loop (HTL) effective field theory  in the computation 

(Braaten and Pisarski, ’92)

When the momentum is soft ~ gT, resumed (and non-local) propagators and vertices have 
to be used



HTL physics corresponds to integrate out the scale T

for soft momentum 

In QED , corrections to the HTL physics arise from

Power corrections: p/T corrections to HTL

Two-loop corrections  ~ 

HTL effective theory in QED and corrections

Stetina, CM, Soto, Carignano. ‘18
Carignano, Carrington, Soto , ‘19



Diagrams with soft loop momentum (because gluon contribution is then 
Bose-enhanced), which are hard to compute as they need HTL are more 
important
Power corrections  p/T 
Two-loop diagrams

For semi-hard momentum the leading order term can be easily computed by 
expanding in (m/p)^2   (then one can use free classical propagators!)  

and two-loops are subleading

HTL theory in QCD and corrections

Not only the propagators are modified, also effective (non-local) propagators are needed 

Corrections to HTL physics



In all the above diagrams  p is semi-hard, k the internal momentum 

These diagrams are dominated by k ~ mD (use of the HTL effective theory !  )

But these diagrams  can be computed in an expansion in k/p and mD /p 



Fully expanded potential in momentum space

For

this holds up to corrections to the real part of order

And to the imaginary part of order  



Keeping the momentum semi-hard: in coordinate space the potential is expected to
 be valid only for 

Damped approximation: 
keep in the gluon propagators  unexpanded factors   

which is more realistic for momenta getting close to the soft scale 



In the damped approximation  





Our potential in p space describes the semi-hard scales 
The damped approximation allows us to get closer to r ~ 1/mD

For scales r << 1/mD we miss the contribution of the soft modes   p ~ mD 

but these have a universal form ~  a polynomial in r  (up to logs), as  one can expand in the Fourier transform

We add contributions to the coordinate potential arising from the soft modes 

Comparison with lattice data

C adjusts the origin of energies;
We obtain the coefficients by fitting to lattice

Potential [1]. Bzavov, Hoying, Kaczmarek, Larsen, Mukherjee, Petreczky, Rothkopf, Weber, 23

Mass spectrum and widths [2] Larsen, Meine, Mukherjee, Petreczky, 20



Use g =1.8 from fit T=0 lattice data;       bottom quark mass M = 4676 MeV

Find fitted constants to all available T (solid bands are uncertainties
 in the fitting with lattice [1])

The real part of V depends very little on T  (like the lattice data)

The imaginary part of the V has big contribution from the soft region



We solve the Schrödinger equation using the real part of the potential and find the binding energies

Decay rates are found as 

Fitting coefficients found by fitting with data in [2] (C plays no role …)

Similar values as with [1], except for that of 

Γ = −2⟨Im𝑉⟩



Dissociation Temperature

It can be defined as the temperature at which the binding energies equal the decay width

At LO       

BLO, with the fit to [1]

BLO, with the fit to [2]

(due to the different values in  fitting coefficient; it suggests a problem with the data)



CONCLUSIONS

We have computed  corrections to the LO static potential in QCD in 

momentum space , valid in the regime

We have provided  the static potential in configuration space, including  
pieces due to soft modes ( which are universal  ) 

Reasonable description of lattice data


