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Motivations

The study of entanglement in many-body systems has applications in different areas of physics:

Quantum phases of matter and quantum phase transitions [Vidal et al.; quant-ph/0211074].
o Effective number of degrees of freedom [Casini, Huerta; hep-th/0405111].

High-energy physics.
o Confinement [Klebanov et al.; 0709.2140].

AdS/CFT and quantum gravity [Ryu, Takayanagi; hep-th/0603001].

Quantum computing and quantum simulations [Abanin, Demler; 1204.2819]
[Daley et al.; 1205.1521].

For “pioneering contributions to the understanding of quantum entropy in gravity and quantum field theory”.
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Motivations

In order to study entanglement measures one
has to face different challenges.

Typical numerical techniques struggle to
compute such highly non-local quantities.

New, efficient numerical techniques (1st
part of the talk).

For gauge theories, the definition itself
of entanglement is ambiguous due to the
Gauß law.

Better understanding on how to treat en-
tanglement in presence of local constraints
(2nd part of the talk).
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Entanglement in QFT

H = HA ⊗ HB
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Replica trick

A common way to calculate Tr ρn
A is to exploit the replica trick [Calabrese, Cardy; hep-

th/0405152] (lattice discretization: [Buividovich, Polikarpov; 0802.4247]).
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Monte Carlo simulations can compute Zn(l + a)/Zn(l) in arbitrary dimension ...
... but typical methods are not efficient in doing so!
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Entanglement in gauge theories

Hphys. ̸= Hphys.,A ⊗ Hphys.,B
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The problems to face

1st part of the talk

Cn → Zn(l + a)/Zn(l)

Common Monte Carlo methods to com-
pute rations of partition functions can be
biased or suffer from bad signal-to-noise
ratio.

Non-equilibrium Monte Carlo simulations
for entanglement measures.

2nd part of the talk

Hphys. ̸= Hphys.,A ⊗ Hphys.,B

The non-factorizability of the Hilbert
space leads to an ill-defined replica
geometry.

Duality transformations, mapping Abelian
gauge theories to spin models.
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Non-equilibrium Monte Carlo for entanglement measures



Markov Chain Monte Carlo simulations

Monte Carlo simulations allow for calculations of expectation values of observables sampling
from Boltzmann distributions

⟨O⟩ =
∑

i

Oi
e−S

Z

Thermalization Equilibrium configurations → Measurements

Problems
Critical slowing down
Sign problem (no real-time dynamics)

Advantages
Efficient calculations of ground state,
local observables
Scaling

However, equilibrium Monte Carlo techniques fail to efficiently compute non-local quantities

Z

Z0
= ⟨e−∆S⟩ −→ Exponential scaling in the volume!
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Non-equilibrium Monte Carlo: the Jarzynski’s equality

[Jarzynski; cond-mat/9610209]

q0 ∼ e−S0 = e−Sc(0) → e−Sc(1) ... → e
−Sc(nstep) = e−S ∼ p

Equilibrium configurations

nstep

Z0 → Sc(0)

Z → Sc(nstep)

W =
∑nstep

n=0

{
Sc(n+1) − Sc(n)

}
Jarzynki’s equality: ⟨exp(−W )⟩ = Z/Z0

Polynomial scaling in the number of d.o.f.: [Caselle et al.; 1801.03110], [AB, Cellini, Nada; WIP].
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Non-equilibrium Monte Carlo for entanglement entropy

Protocol introduced in [Alba; 1609.02157] and generalized in [AB, Panero; 2304.03311].
Applied to spin models (e.g. S = −β

∑
⟨ij⟩ σiσj), generalizable to gauge theories.

x

τ

A B A B

β = β
β = 0
β = 0

β = 0
β = β
β = β

Z2(l) Z2(l + a)
A B A B
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Some results for the (1 + 1)D and (2 + 1)D Ising model

[AB, Panero; 2304.03311]
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Gauge theories: duality and entanglement



Entanglement in gauge theories

Hphys. ̸= Hphys.,A ⊗ Hphys.,B

The replica space is ill defined!

The problem has been addressed in a variety of ways and theories:

Local extension of the Hilbert space [Buividovich, Polikarpov; 0806.3376], [Donnelly;
1109.0036],[Ghosh et al.; 1501.02593], [Soni, Trivedi; 1510.07455].

Algebraic approach [Casini et al.; 1312.1183].

Momentum-basis factorization [Aoki et al.; 1502.04267].

New lattice geometries [Chen et al., 1503.01766].

Lattice dualities [Casini, Huerta; 1406.2991], [Radičević; 1605.09396], [Lin, Radičević;
1808.05939], [Moitra et al.; 1811.06986].
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Kramers-Wannier duality

Kramers-Wannier duality [Kramers, Wan-
nier; 1941] relates two different lattice
models: Z ∝ Zdual.

In three spacetime dimensions it maps a
gauge theory to a spin model.

In particular: Ising 3D ↔ Z2 gauge theory.

It was shown that the universal information encoded in the entanglement entropy is exactly
mapped [Casini, Huerta; 1406.2991], [Moitra, Soni, Trivedi; 1811.06986], in particular

Cgauge
n (β⋆, l) = Cspin

n (β, l)
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Duality and entanglement

For gauge theories that admit a dual spin model,
it is possible to:

Explicitly derive the geometry of the replica
space for the gauge theory.

Simulate the spin model to compute the
entropic c-function of the gauge theory.
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Monte Carlo simulations

Setup

In [AB, Panero; 2404.01987] we computed
C2 in the (2 + 1)-dimensional Z2 gauge
theory exploiting duality.

Non-equilibrium MC intro-
duced in [Alba; 1609.02157],
[AB, Panero; 2304.03311].

We studied the confined phase using the
scale setting in [Caselle, Hasenbusch; hep-
lat/9511015].

Simulated volumes up to 2102 × 1000
(zero-temperature/ground state results).

Extrapolations
First thermodynamic and continuum ex-
trapolation of a (2 + 1)-dimensional en-
tropic c-function in literature.
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Theoretical predictions

The entropic c-function detects the effective
number of (IR) d.o.f. of a theory.

In confining, holographic theories the en-
tropic c-function has a sharp transition [Kle-
banov et al.; 0709.2140]
−→ entanglement as a probe of confinement.

The scale of the transition is Λ ∼ ΛQCD ∼ Tc ∼
mg.

For non-holographic theories numerical simula-
tions are required.

Gluons

Hadrons/Glueballs

Non-holographic
behavior?

Length of the “cut”
in units of Λ
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Our results

f(lmg ; B, c) =
B

(lmg)c
B = 0.360(9) c = 0.48(2) [Florio; 2312.05298]

f(lmg ; A, α) = Almg

∫
dt exp

(
−2

√
1 + t2αlmg

)
A = 0.33(3) α = 0.360(19)

[Klebanov et. al.; 0709.2140]

[AB, Panero; 2404.01987]
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Conclusions and outlook

Non-equilibrium MC

Competitive tool for large scale simula-
tions of entanglement measures in arbi-
trary dimension.

So far applied in the Lagrangian formalism
→ it is possible to take the Hamiltonian
limit [Funcke et al.; 2212.09627] to study
Hamiltonian systems.

Promising extensions using (Stochastic)
Normalizing Flows [AB, Cellini, Jansen,
Kühn, Nada, Nakajima, Nicoli, Panero;
WIP].

Entanglement in gauge theories

Unambiguous results for entanglement
entropy in Abelian gauge theories.

Directly generalizable to other theories,
e.g. U(1) gauge theory.

The replica geometry can be derived
using the duality: extension to the
non-Abelian case?

Long term goal: SU(N) gauge theories
→ better understanding of confinement
via entanglement.
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Backup slides



Normalizing flows

NF are parametric, invertible and differentiable maps between probability distributions.
Usually consist in a sequence of coupling layers with a tractable Jacobian of the transformation
[Albergo et al.; 1904.12072], [Kanwar et al.; 2003.06413].

gθ : q0 → qθ ≃ p gθ = gN ◦ ... ◦ g2 ◦ g1 qθ(ϕ) = q0(g−1(ϕ))| det Jg |−1

Trained minimizing the Kullback-Leibler divergence DKL(qθ||p) =
∫

dϕ qθ(ϕ) log
(

qθ(ϕ)
p(ϕ)

)

Equilibrium configurations

nlayer

Z0 → S0

Z → S

W = S − S0 −
∑nlayer

n=1 log | det Jgn | ⟨exp(−W )⟩ = Z/Z0 [Nicoli et al.; 2007.07115]
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Stochastic normalizing flows

SNF combine stochastic and deterministic updates [Wu et al.; 2002.06707]
[Caselle et al.; 2201.08862].
Trained by minimizing the dissipated work W − ∆F ≥ DKL(q0||p).

q0−−→ ϕ0
g1−−→g1(ϕ0) e

−Sc(1)
−−−−−−→ϕ1

g2−−→g2(ϕ1) e
−Sc(2)

−−−−−−→ϕ2
g3−−→...

e
−Sc(nstep)

−−−−−−−−−→ϕnstep

Equilibrium configurations

nlayer = nstep

Z0 → S0

Z → S

W =
∑nstep

n=0 {Sc(n+1) − Sc(n)} −
∑nlayer

n=1 log | det Jgn | ⟨exp(−W )⟩ = Z/Z0

Inherited scaling with #d.o.f.: [AB, Cellini, Nada; WIP].
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Non-equilibrium MC for SU(3) in (3 + 1)D: scaling

[AB, Cellini, Nada; WIP]
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SNF for SU(3) in (3 + 1)D: scaling

[AB, Cellini, Nada; WIP]
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Defect coupling layers

Target theory: S =
∑

i,µ
−2κ ϕiϕi+µ̂ + (1 − 2λ)ϕ2

i + λϕ4
i

x

τ Environment

Active

Frozen
y

x

τ

ϕ′
active = exp(−|s(ϕfrozen)|)ϕactive + t(ϕfrozen)

Neural network outputs

Z2 equivariant [Del Debbio et al.; 2105.12481].

Related works: flows for lattice defects [Abbott et al.; 2404.11674], autoregressive neural networks
for entanglement entropy [Białas et al.; 2406.06193].
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Transfer in the coupling

(1 + 1)D
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[AB, Cellini, Jansen, Kühn, Nada, Nakajima, Nicoli, Panero; WIP]
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Transfer in the volume
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[AB, Cellini, Jansen, Kühn, Nada, Nakajima, Nicoli, Panero; WIP]
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Total cost of the simulations
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[AB, Cellini, Jansen, Kühn, Nada, Nakajima, Nicoli, Panero; WIP]
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Duality and entanglement

Hamiltonian

Lagrangian

Spin model

(e.g., D = 3 Ising model)
Dual model

(e.g., D = 3 Z2 gauge theory)

Cn

with HA ⊗ HB

Zn

replica trick
+

discretization

[AB, Panero; 2404.01987]

Z⋆
n

C⋆
n

superselection
sectors

[Casini, Huerta; 1406.2991];
[Radičević; 1605.09396];

[Moitra, Soni, Trivedi; 1811.06986]

[Lin, Radičević; 1808.05939];
[AB, Panero; 2404.01987]
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Operator algebra, centers and entropy

Consider Abelian gauge theories on the lat-
tice.

In a basis that diagonalizes the electric field
operators we have a well defined notion of
electric flux on every link.

Given a bipartition of the lattice we can
define the net electric flux through the
boundary k =

∑
a

ka.

H =
⊕

k
H(k)

A ⊗ H(−k)
B

k1 −k1

k2 −k2

ka −ka

A B
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Operator algebra, centers and entropy

It was shown in [Buividovich, Polikarpov; 0806.3376],
[Casini, Huerta, Rosabal; 1312.1183] that the entanglement entropy of an Abelian gauge theory
admits the following decomposition

SA = −
∑

k

p(k) log p(k) −
∑

k

p(k)S(ρ(k)
A ).

The first term depends on the classical probability distribution of the flux through the boundary.

There are arguments suggesting that in the continuum limit the universal part of SA takes
contributions only from the second, distillable term [Casini, Huerta; 1406.2991], [Moitra, Soni,
Trivedi; 1811.06986].

Still, the non-factorization of H makes the definition of a replica geometry less clear.
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ZN spin model in 2D

AB AB
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ZN spin model in 2D
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Abelian gauge theories in 3D

In a system of n replicas gauge fields on the boundary belong to 4n plaquettes.
Notice that this geometry constraints gauge transformations along the entangling surface to
be the same on all replicas.
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Abelian gauge theories in 3D: central-plaquette geometry

Geometrically, an other possibility is to locate the entangling surface along the links of the
spin model.
In this geometry spins along the entangling surface have an enlarged number of nearest neigh-
bors.

Replica 1 Replica 2

This “central-plaquette” geometry was introduced in [Chen et al., 1503.01766].
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Boundary conditions

In general the topology of the lattice manifold has an effect on the duality transformation.

For example, in the 2D Ising model on a torus

Z(β) ∝ Z⋆
pp(β⋆) + Z⋆

pa(β⋆) + Z⋆
ap(β⋆) + Z⋆

aa(β⋆).
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