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Semi-QGP region
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Semi-QGP region

1.2 .
LS mum A W = = L]
1 -
-
0.8 l
g direct renormalization —=—
06 s QQ renormalization —s—
"
04 fF
0.2
0 T,
2 4 6 8 10 12

Figure 1: Gupta, Hubner and Kaczmarek, 0711.2251

< Range: T, to 4Ty of the deconfined medium.
< 0.4 < /41 <1 for SU(3) gauge theory, without quarks. (Zl = TrL(x)>
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Matrix Model
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(our) Matrix Model

We take the background field as,

Q 27T
Actp = 550# = TQ do,u (1)

Where the ¢° is related to the thermal Wilson line

L(x) = exp (2];” q) 2)

where (q)ap = ¢%dab - is a diagonal matrix, with N. — 1 independent element,
satisfying

Ne
>t =0
a=1

Hence the total field,
Ap, == Acl,u + Bu (3)
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Matrix Model
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(our) Matrix Model

Inverse Gluon propagator for the fluctuation B, —
(A% )' = (D26, + DE DE! (1 _ %) +2ig[Crs ] (4)
Here, fo =0, —igA; ! and DCltab zP“btab where
P = (po+27(¢" — ¢"),p) = (03", P) (5)

Hence the Gluon propagator becomes,

Pa,b,cd (6)

ab pab
(B(P)BE(~P)) = <6W (- 5>P“P”> s

(P ) (P’

and Pab,cd — 6ac6bd o Nidabécd
c
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Matrix Model
[e]e] lele]

(our) Matrix Model

< To leading order, the potential for holonomy, g,
Vpe” ~ TrlOg((AZly)’l) ~ T4B4(q) ~ T4q2(1 — q)2 (7)

with ¢ = mod(q,1).
This includes, ¢®> ~ trA2 ¢* ~ trAd and one problematic ¢® term, implying a
first order phase transition from ¢ = 0 to g # 0 in the deconfined region.

<« Lattice study shows no phase transition in the deconfined phase, above
Ta.
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Matrix Model
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Evidence of (our) Matrix Model
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Figure 2: Borsanyi, Endrodi, Fodor, Katz, Szabo, 1204.6184

< Perturbative study can only give logarithmic correction in pressure to,
p~T

< But Lattice suggests, near the transition region, viz., ~ 1.27; to 4.07},
leading correction to pressure in pure gauge theory ~ T2. Not Exact,

however, Approximate!
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Matrix Model
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(our) Matrix Model

To incorporate these, we add to the Holonomous potential a non-perturbative
term,

Vion—pert ~ CT?Ba(q) ~ —CT?q(1 — q) (8)
for small g. We want an auxilliary field that can dynamically generate Bz(q) in
the potential for g,so that there is no phase transition above T, , where ¢ # 0
always.
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Teen Field
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Two Dimensional Ghost - Teen ()

9 (Teen) field propagator in momentum space,

1

Aab pab p) =
< U8R = G et

(9)
where py < Ty and Ty < gT < T. Holonomic potential using Teen field —

Vnonfpert = _Trlog ((A_l)gb(Pab)) X TC?TQ Z |qabH(1 - qab)l (10)

a,b
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Teen Field
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Teen Field (¢)
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Figure 3: Teen contribution to gluon Self energy

Now the total self energy,

Hﬁoyt;aalb’Cd _ H/;lu;ab,cd + ng;ab,cd _ _(m2)ab,cd§Huu(Pab) (11)

which satisfy the Ward identity.
NOTE: Due to non-zero holonomy, a ~ g>T /p term arises, but anyway vanishes
because of equation of motion, which is essential for consistency.
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Shear Viscosity
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Shear Viscosity

We use kinetic theory when ¢* # 0 for gluons and teens. Then the Boltzmann
equation,
,a1b
Sa 2p laﬂfq’albl (X, P, t) = _CB,fl1b1 [fq} (12)

with ¥ = gluon, teen, and Sy = +1 |, Steen = —1
For the LHS of the Boltzmann , we follow Chapman-Enskog method, where we
expand the distribution function up to linear order in fluctuation.
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Shear Viscosity
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Shear Viscosity

Stress Energy tensor in kinetic theory:

T (r,t) = 2 / dTap PPV fo ap(r, p,t) (13)
g
where

1
0 _ ¢0 —
Jatao = Jab(En) = S mgamyr

For the Teen field (), in equilibrium,

fg’ab(Ep) = ifgo,ab(Ep)
depending upon whether the teen field is being absorbed or emitted. Here,
=30 55 P [ (19
ab = CRY TS
gl i (2m)32E,
and
Ta dpdQ T2 dp) dS2
dlop = pabsba (/ 2 / I _ tda Il )
L zs:agl P ] @npzp T 2 ) @np
(15)
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Shear Viscosity
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Shear Viscosity- Collision term

For the RHS of the Boltzmann equation, the Collision term C’a . [fq} depend
;@101

on the scattering matrix, at leading log order, such that,

Cq a1by fq] Z /;Tdrazbz A/ dFaSbB A/ dra4b4 (277)4

54(P1+P2—P3—P4)| aw 3’3'

x |:fa,a1b1 fW,ang (1 + fBaj,a3b3)(1 + fwl,u4b4)

(4 fy )0+ )| (16)

—_ J !
T Lazbs fw ,a4by
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Shear Viscosity
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Feynmann Diagram (Tree level)
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Figure 4. Feynmann diagrams contributing to the shear viscosity
calculation at tree level. Among these,contribution from teen exchange
diagrams vanishes at tree level for soft momentum exchange limit.

14/23



Shear Viscosity
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Viscosity (Ongoing)

We have obtained results for the Shear and Bulk Viscosity at leading log order
for general £. For simplicity, we present here:
e Shear viscosity at small Polyakov loop value:

_ 3 128 5062 +3 (17)
T 10(9%)%2In1/(g2N.) 5 x 45((4) 42 +1 *

n

e Bulk viscosity at small Polyakov loop value:

= (1/3 —v2)*¢? 5768(5Ozt4 +43t% — 3)

2
g*log(g—1) 3(8tt — Tt2 — 4) h (18)

Where, t =T /Tjy.

Also Note that, We use two parameters w and k, which enters through g and

2
log(1/g) as log(x/g) and ¢ = 71%(1324:”%).

Now we need thermodynamics to fix the loops and get the 7/s, (/s plots.
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Thermodynamics and Loops
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Thermodynamics!!

At large N. we minimize the potential

Vea(T) ~ da(T)Ba(q) — di(T) B2(q) (19)
Here do(T) = (27%/3) T*, and d1(T) ~ T>T3, but here we determine this, by
considering d(T)? = 2292{7)  For the simplest ansatz, we use

dy1(T)

d(T) = 2xT/Ty = 2xt,  t=T/Ty

Apart from this simple ansatz, we also use two other ansatz which fits the SU(5)
loop data with our model pretty well, viz.,

da(T) = 1.08¢+ 5.2032,
dp(m) = 225 11050449182, = L (20)
t3 Ty
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Thermodynamics and Loops
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Figure 5: Comparison of loop of first order between our ansatz and
Lattice data for SU(5) pure gauge theory.
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Thermodynamics and Loops
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Figure 6: Loops using other two ansatz for fitting with lattice data.
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Result (Shear Viscosity)
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Figure 7: Shear viscosity to entropy ratio plot for two ansatz.



Result (Bulk Viscosity)
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Figure 8: Bulk viscosity to entropy ratio for two ansatz
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Result
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Figure 9: Comparison of Shear viscosity with and without Teen field.
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Result
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Figure 10: Bulk viscosity to shear viscosity ratio, with Teen.
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Conclusion
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Conclusion

This is a ongoing work. Complete conclusion/discussion awaits. Still few short
comments:

e Teen field could explain the T behaviour of pressure near transition region.
e Shear viscosity is suppressed near the transition region with the inclusion of
Teen field , but still even at Ty, 7/s is 4 times the AdS/CFT bound. With
Quarks, £y is smaller at Ty, so n/s will be smaller. We want to compare our
result with recent lattice data of 1/s from Altenkort et al, 2211.08230 .

e Bulk viscosity depend on sound velocity as (% —v2)2,

s

Thank You for your attention!
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