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Quantum Chromo-Dynamics

QCD Lagrangian depends on a few parameters: one coupling, as, and quark masses (m,, mg,
ms, me, mp and my).
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Quantum Chromo-Dynamics

QCD Lagrangian depends on a few parameters: one coupling, as, and quark masses (m,, mg,
ms, me, mp and my).
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Gluon self-coupling

1
EYM = _ZFEI;LVF:V ’
F2, = OuAL—0,A%—g fabCAgAg

@ Gluon self-couplings responsible for the main differences
between gluon and photon dynamics.

@ Vertices form-factors can be computed from the lattice or
DSE.

o Key non-perturbative ingredients in DSE.
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Lattice formulation

Path integral in imaginary time:

1 h 1y
=7z / [dUdydF]OU, v, F)e= D) — 557 0;

dimensionless; lattice spacing a fixed a posteriori.

e Just QCD. @ Finite volume and discretization errors.

o Regularized per se (A ~ a™1). @ Broken rotational symmetry!

@ Expensive chiral fermions.
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Lattice setups

Exploited quenched gauge field configurations with:

B L*/a* a(fm) confs
56 32%  0.236 2000
57 32 0.182 1000
58 32% 0.144 2000
6.0 32* 0.096 2000
6.2 32* 0.070 2000
6.4 32* 0.054 1300

@ Absolute calibration for 8 = 5.8 [S. Necco and R. Sommer, Nucl. Phys. B622, 328 (2002)].

@ Relative calibrations from gluon propagator scaling [FS et al. PRD98 (2018) 114515]
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Outline

© Three-gluon vertex
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Computing three-gluon vertex in Landau gauge

Landau gauge
Landau gauge 0,,A;, = 0 fixed numerically, allowing to compute gauge dependent quantities.

@ Gluon propagator:
AI(G) = (A(D)AN (=) = 3 A(6) P, a)
@ Three-gluon vertex:

fabc (A2(q) AL () AS(p))
24 ’

gauu(qarap): g+r+p=0
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Extracting the transversely projected vertex

From the lattice data, we compute the transversely projected vertex, I**(q, r, p):
G (q,r,p) = gF """ (q,r,p) A(a%) A(r?) A(p?)
which corresponds to the transverse projection of the 1PI vertex:

Fa,uu(q? r, P) — [e'w'v (q’ r, p)P’r\n/(q)P////,(r)Pl’;/(p)

No access to longitudinal part

If the 1PI vertex, [***(q, r, p) has a longitudinal and a transverse part:
r(g,r,p) = T(q,r,p) + T 7% (q, 1, p)

we will only access the transverse one!
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Tensorial structure of [**(q, r, p)

The Ball-Chiu decomposition of the 1PI three-gluon vertex has 14 tensors:

817627”'6107 tlv"'t47

with 10 partially longitudinal and 4 transverse tensors.

[Phys. Rev. D22 (1980) 2550]

The transversely projected tensor F**¥(q, r, p) will have at most the contribution of four
independent tensors:

Fa’w(q, r, p) = Fl)\‘f““’ + Fz)\g““’ + F3)\§WV + F4)\Zélll’

F. de Soto
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Kinematics of the three-gluon vertex

Fe*(q, r, p) depends on three momenta, with g + r 4+ p = 0. The scalar form factors can be

cast in terms of the three squared momenta.

p2

e

. 2 2 2
Plane with constant s2 = w
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Kinematics of the three-gluon vertex

Particular cases:

|

Case ‘ Def. ‘ gr ‘ Tensors ‘
Sym. > =r’>=p° %’T )\iyg'
— g

Soft gluon p=20 T A3
Collinear | g=r=—p/2 0 (none)
Bisectoral > =r? (0,7) 3

General - 4

2

q p2 ': 0
Symmetric and soft-gluon cases already studied in [Phys.Lett.B 818 (2021) 136352]

Three- and four-gluon vertices from quenched lattice-QC 12 /43

F. de Soto



Extraction of form factors

Once we have evaluated F*¥(q, r, p) from the lattice, we have to solve:

S Tila 202 X (a1 p) N, 7 p) = T (q, . p) A7 (q, 7. p)
i

or equivalently obtain a projector P;(q, r, p):

Fi(qzv r27 P2) = Fauu(q’ r, P)'E)ia;w(% r P)
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Renormalization: momentum subtraction renormalization schemes

Propagator
Dpea(p?) = lim Z, (2, 2)R0(p?, 2)

with

1
AR,G (p2) ‘p2:(2 = ?

From the lattice, we set
Za(¢?,a) = (*Ao(¢?, a)

F. de Soto
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Renormalization: momentum subtraction renormalization schemes

Three-gluon vertex

FR,CZ(q P ,P ‘k(q 2 r2 p2) — IIIT:_JZ3(C )FO(qzarzapz;a)
with
MR c2(a, f2>P2)|k(¢2) =1
for some kinematic configuration defined by k(¢?) = (¢2, 04p, 0,p) corresponding to a

kinematic point lying on the plane % = (2 and the two angles among momenta Oqp, Orp.

From the lattice, we set B
3k1(C2 ) =T (q27 r27p2)‘k(<2)
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Results for the general kinematics: planar degeneracy.

Tree-level form-factor renormalized in soft-gluon scheme at { = 4.3 GeV.

1.4 T T T T T
lHr 1.2
1.0
0.8
0.6
0.4

0.2 fteal . @ Nice scaling in terms of
- —e— 2 2 2
0.0 ss)(/)mr%;[(r)irc]: —e—i ] §2 = TP +r2 +P° for different
02} bisectoral ——s— _ kinematics!
' | | general
-0'40 0 1.0 20 3.0 4.0 5.0 6.0 [F. Pinto-Gomez, FS, et al,

PhysRevD.110.014005]

s (GeV)
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Conclusions from three-gluon vertex.

The rest of form factors are subdominant or completely negligible,

and the tree-level one, A5/ (q, r, p), dominates.

Planar degeneracy

The full vertex seems to be well described by:

F(q, r, p) ~ (%) o sz A/ (a,7.P)
2

[F. Pinto-Gomez, FS, et al, PhysRevD.110.014005] & JRQ talk!
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Outline

© Four-gluon vertex
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Four-gluon vertex.

Four-point Green function depends on four momenta:

G25(q, r, p, u) = (A2(q)A5(r)AS(p)AS (u))

Tensorial structure:
° [Color] 5ab5cd (3), fabefcde (3), dabedcde (3), fabedcde (6)
o [Lorentz] gns8vs (3), 8459795 (54), 9293Gq5 (81).
@ In Landau gauge there are 41 Lorentz independent tensors!
Kinematics:

2

@ Six Lorentz invariants: (g<, re p2 and u? do not fix the kinematics)

[G. Eichmann, et al., Phys.Rev.D92 (2015) 056006]
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One-particle-irreducible four-gluon vertex.

Depending on the kinematics, four-gluon Green function can have contributions from
disconnected or three-gluon diagrams.

We are interested in the 1Pl four-gluon vertex, so we have to avoid or subtract the
disconnected and 3g diagrams.
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Special kinematical configurations.

Four-gluon vertex hard to extract from the lattice:
o Complex tensorial structure
@ Disconnected or 3g diagrams

@ Noise from 4-point Green function

Recent lattice data at [M. Colaco et al. Phys. Rev. D109 (2024) 074502] & Orlando’s talk

Restricted kinematics

For parallel momenta (p, ap, Bp, (-1 —a — ﬁ)p) the number of tensors is much smaller and
one can eliminate disconnected and 3g diagrams.
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Collinear kinematics.

With parallel momenta we will focus in the special kinematics:

° (p, —p)

° (p ap, —p, —ap)
o (p,p,p,—3p) *

o (p,ap,—p—ap,0

@ Disconnected contributions dominate. The signal is the same size of the systematic errors.

o No transverse 3g vertex with collinear momenta.

* Widely studied, since [D. Binosi et al. JHEP9 (2014), 59] till [M. Colaco et al. Phys. Rev. D109 (2024) 074502]
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Collinear kinematics.

The transversely projected vertex, Fi%ﬁ%(q r,p, u) is obtained as:

gI—abcd (q r,p, u) gggfycg(qu p,u ) :ng-)\-abc‘j (q r.p u)
e A(P)A(P)A(P)AWR) o= e

We will be interested in the tree-level form-factor corresponding to the tensor

f-abe f-cde(

bcd
(Ae)aps (@ r,pyu) = 8u'y' 855 — Ba!8'8B'")

facefbde( /IB/g,y/(;/ galélgﬁ/,y/)

fade fbce /13/ g,y/(;/ ga/,ylgﬁlél)

(g
PS (q)P5 (r)P] (p)PY (u)

X
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Collinear kinematics.

With parallel momenta there are 15 independent tensors [Aguilar et al, Eur.Phys.).C 84 (2024) 7, 676],
and one can use a projector to isolate the tree-level form-factor:

r = bcd
grO = grg%c';j(i(qv r,p, U)® (Pt/)Zﬁcfy(S (qv r,p, U)

that is in principle different from the contraction

r bed
G gl_gé%%(q, P u)®(>‘tl)2ﬁc7§(q7 r,p,u)

gL0 = bed bed
()\tl)‘;ﬂ(fy(S (q7 ry,p, U)® (At/)jyﬂtfyé (q7 r,p, U)

because the 15 tensors are not orthogonal.

F. de Soto
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Collinear kinematics.

8

(p,ap,—p — ap,0)

% i ® (p,p,p,—3p)

Full symbols: T.
Empty symbols: Gp.

Z=
4“
- o
N
L
e o
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Collinear kinematics: summary.

8

|

‘% sk

4.0

4.5

The tree-level form-factor g is:
@ compatible with the contraction
Go
o still rather noisy

@ vaguely compatible with its
tree-level value N'p =1

F. de Soto
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Soft-gluon kinematics

A different strategy: non-parallel momenta with one soft gluon!

(b

@ 3g diagrams easily subtracted from lattice data (for each
set of momental!).

Pros:

@ Lots of lattice momenta (Same kinematics as
three-gluon).

Cons:

@ Full set of tensors contribute.

@ Projection not available. We compute the contraction
with tree-level tensor: Gg.

F. de Soto Three- and four-gluon vertices from quenched lattice-QC 27 /43



Four-gluon vertex (preliminary)

We perform the contraction with the tree-level tensor

= gri%‘i;{s(q/ r,p, U)® ()‘t/)z%c:;jé (q7 r,p, U)

gGo =
()\tl)z%‘fg& (qa r,p, U)® (Atl)z%(i;{; (qa r,p, U)

that in this case will contain the contribution from three-gluon diagrams apart from the
four-gluon 1Pl vertex:

= + +

For each set of lattice momenta (q, r, p,0), we compute the three-gluon diagram using the
lattice data for gluon propagator and 3g vertex and subtract it.

F. de Soto Three- and four-gluon vertices from quenched lattice-QC 28 /43



Renormalization

Four-gluon vertex

FR,CZ(qa r,p, u)‘k(Cz) = ;i_r)no Z4(<27 a)FO(qa r,p,u; 3)
with
rRk7C2(q7 r,p, u)‘k(CZ) =1

for some kinematic configuration defined by k(¢?).

From the lattice, we set B
ZA;<1(<27 a) =To(qg,r,p, u)}k(&)

. . 2 2 2+u2
with k(¢?) defined by (? = SH-FPF0
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Planar degeneracy

There is a large number of
lattice momenta (q, r, p,0) with 2000

o
p+r+ p=0, but each one is 1750 General [ A.
too noisy, so we average

Bisectoral 'O ‘
N Symmetric 0
separately assuming planar ° L)

degeneracy. 1250 ’ %

1000 e \

750 , \.
%

500 !

250

All

e e 0o

1500
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Four-gluon vertex (preliminary)

1.0
| b5.7 | b6.2
0.5 %‘ﬁ + b5.8 | b6.4
o { b6.0 o Nice scaling for different 3's
0.0+ @ Unsubstracted Green function

! X .. ¢ ¢ ;ﬂ’ negative for large-s
% b W 'P#
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Four-gluon vertex (preliminary)

To isolate the 1Pl vertex, we need to subtract the 3g diagrams (including crossed terms):

()‘tl)gf:dé 2 2 2 2\FS8 2\F( .2 2 2
et e Gy = (P BEIT AT )
afy abcd

where T° is the soft-gluon tree-level form-factor, and

(5(x +y) +2) (x* = 2x(y + 2) + (y — 2)?)
2xy

f(x,y,z) =

We assume the three-gluon vertex is dominated by tree-level form-factor. J
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Four-gluon vertex (preliminary)

o After subtracting the 3g diagrams the
4g form-factor becomes positive.

@ An IR finite supreession appears,
qualitatively similar to:
o M. Huber, Phys.Rev.D 101 (2020)
e N. Barrios, et al, Phys. Rev. D 109
(2024), L091502
e Aguilar et al, Eur.Phys.J.C 84
(2024) 7, 676
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Four-gluon vertex (preliminary)

Comparison of the results obtained from the lattice with the ones coming from the
Schwinger-Dyson equation governing this vertex reveals a nice agreement between both
approaches!

1.2 T T T T T

=
o
T
L

©

o
T
L

©

EN
T
!

Averaged form factors
o
()]
.
.

Dy(s?) — Lattice
0.2r — Du(s?) —SDE ]
0 1 2 3 4 5 6
5 [GeV] A.C. Aguilar, FS et al 2408.06135 & LR talk!
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Outline

@ Renormalized coupling
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Three-gluon coupling

MOM three-gluon strong coupling

(A(q)A(NA(P))
go(a)To(q%, r*, p*; a)Ao(q%; a) Ao(r; a) Ao(p°; a)

G(q*, r* p; a)|,

Implies:
gru(€?) = lim Z3 (6% 2)Z3%(C%; a)gol2)
Finally, )
are(¢?) = gRZSf )
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Planar degeneracy at action...

If we choose soft-gluon kinematics, s(¢?) defined by g°> = r? and p? = 0, we have
s(¢?) = (¢ m/2,7/2)
we recover the soft-gluon MOM scheme definition widely used in the past with:
Z;1(¢%,a) = To(¢,¢%,0,a) = T (¢% a)
For any other scheme k,

To(a%, 1% p% 3)| )

gri(¢?) = T2 ) 8rs(¢?) = Try(e2)(d%, 1, P a)’k(cz) 8rs(C?)
0 ;

F. de Soto
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Planar degeneracy at action...

If planar degeneracy holds,
FR’s((z)(qz7 I‘2, p2; a)’k(@) =1

and thus:
gre(¢?) = grs(¢?)

Each kinematic configuration defines a different
renormalization scheme k(¢?).
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Three-gluon coupling

12 I I I I
a soft-gluon +—e—
Sg1 ok symmetric —— |
' bisectoral ——
eneral ——
0.8 g -
0.6 .
0.4 - @ Nice scaling!
@ Suggest a universal 3g
0.2 7 coupling...
0.0 [PhysRevD.110.014005]

0 1 2 3 4 5 6 JRQ talk!
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Four-gluon coupling

MOM four-gluon strong-coupling

G(pr P2, p3,paialy = (A(pL)A(p2)A(p3)A(pa))
4

= g5(a)Fo(p1, p2, p3, pai a) [ [ Ao(pF: a)
i=1

Implies:
8ri(C%) = lim Z,, (€% ) Z4(C* 2)g3 ()
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Four-gluon coupling (preliminary)

1.2

1.0+

0.8+

206 @ Nice scaling for the different 3's.
S @ Running-coupling similar to a3g.

0.4+

0.2+

0.0
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© Conclusions
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Conclusions

First results for 4g vertex beyond collinear kinematics.

Four-gluon vertex shows IR suppression in agreement with SDE.

New definition of a general MOM renormalization scheme for the 3g vertex exploiting
planar degeneracy.

First lattice calculation of ayg.

12
%gyg |

T T 1.2
soft-gluon ——

symmetric ———
bisectoral ——+—

eneral ——
0.8 g 1 0.8

0.6 1 Jo.6
04 B

02 b

0.0
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