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Strong interest for the evaluation of gluon correlation functions both
from the lattice or from the various continuum approaches:

〈A〉, 〈AA〉, 〈AAA〉 , . . .

These are gauge-dependent building blocks from which one aims at
evaluating observables 〈O[A]〉 and study the physics.

Question: is it possible to access some physical features
more directly from the correlation functions?

Can the correlation functions probe the breaking of center symmetry
in Yang-Mills theories at finite temperature and thus the
confinement/deconfinement transition?
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This is an old question ...

Cucchieri et al (2007); Fischer et al (2010);
Bornyakov et al (2011); Fister et al (2011);
Aouane et al (2012); Maas et al (2012);
Silva et al (2013) & (2016).

Cucchieri and Mendes, PoS 183 (2014).

... to which we would like to contribute with some recent developments.
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This is in fact the continuation of some work that D. M. van Egmond
and myself presented @FunQCD, Valencia, 2022.

There, we argued that the Landau gauge correlators are maybe not
the most appropriate for probing the breaking of center symmetry.

We also introduced a new gauge, the center-symmetric Landau gauge,
that allows one to construct order parameters directly from the
gauge-field correlators.
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We illustrated the benefits of this gauge by showing some explicit
calculations of the one- and two-point functions 〈A〉 and 〈AA〉.

For the two-point functions in particular, we found distinctive
behaviors at the transition:

[van Egmond et al, SciPost Phys. 12 (2022) 087 & Phys.Rev.D 106 (2022) 7, 074005]
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These continuum calculations required some modelling, however,
because, the center-symmetric Landau gauge-fixed action is
not known in complete form due to the Gribov ambiguity.

The results of 2022 used the Curci-Ferrari model to extend
phenomenologically the incomplete Faddeev-Popov
gauge-fixed action.
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In this talk, I would like to convince you of the benefits of the
center-symmetric Landau gauge without relying on any type
of modelling.

To this purpose, I shall consider the lattice framework which
allows for a full implementation of the center-symmetric
Landau gauge.

I shall consider SU(3) Yang-Mills theory but the analysis can
be easily extended to other groups.
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OUTLINE

1. Links, Plaquettes and All That.

2. Polyakov Loop and Center Symmetry.

3. Correlators as Order Parameters?

4. Standard vs Center-Symmetric Landau Gauge.

5. Simulation Results.
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1. LINKS, PLAQUETTES, AND ALL THAT
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LINK VARIABLES

Consider a lattice whose sites are parametrized by a 4-vector n with
integer components nµ, with µ = 0, 1, 2, 3, and such that 0 ≤ nµ ≤ Lµ.

We denote by µ̂ the 4-vector of components µ̂ν = δµν . It connects a
given site n to its neighbouring site n + µ̂ in the direction µ.

They are taken periodic in all directions: Uµ(n + Lν ν̂) = Uµ(n).
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LINK VARIABLES

Consider a lattice whose sites are parametrized by a 4-vector n with
integer components nµ, with µ = 0, 1, 2, 3, and such that 0 ≤ nµ ≤ Lµ.

To such an oriented link between neighbouring sites, one associates
a link variable Uµ(n) ∈ SU(3):

They are taken periodic in all directions: Uµ(n + Lν ν̂) = Uµ(n).
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PLAQUETTES AND WILSON ACTION
With the links one can form more general constructs. For instance, to
a square loop going through n, n + µ̂, n + µ̂+ ν̂ and n + ν̂:

one associates a plaquette variable:

Uµν(n) ≡Uµ(n)Uν(n + µ̂)U†µ(n + ν̂)U†ν(n) ∈ SU(3)

which is a discretized, but still gauge-invariant, version of the
Yang-Mills action.
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a square loop going through n, n + µ̂, n + µ̂+ ν̂ and n + ν̂:

Plaquettes are the basic variables entering the Wilson action:

SW [U] ≡ 1
ζ

∑
n

∑
µ<ν

Re tr
[
1− Uµν(n)

]
a discretized, but still gauge-invariant, version of the Yang-Mills action.
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GAUGE INVARIANCE

A gauge transformation is a periodic function g0(n) on the lattice,
taking values in SU(3). It acts on the links as

Uµ(n)→ g0(n)Uµ(n)g†0(n + µ̂)≡Ug0
µ (n)

and on the plaquettes as

Uµν(n)→ g0(n)Uµν(n)g†0(n)

This ensures that the the Wilson action is gauge invariant:

SW [Ug0 ] =
1
ζ

∑
n

∑
µ<ν

Re tr
[
1− g0(n)Uµν(n)g†0(n)

]
= SW [U]
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OBSERVABLES

Observables are defined as averages of gauge-invariant functionals,
O[Ug0 ] = O[U], with a probability weight given by e−SW [U]:

〈O[U]〉 ≡
∫
DUµO[U] e−SW [U]∫
DUµ e−SW [U]

On the lattice, such integrals are evaluated using Monte-Carlo
importance sampling:

− one generates an ensemble of link configurations E = {Uµ}
that follows the probability law e−SW [U];

− then, the observables are computed as

〈O[U]〉 '
∑

Uµ∈E O[U]

Nconf
≡ 〈O[U]〉E
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2. POLYAKOV LOOP AND CENTER SYMMETRY
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POLYAKOV LOOP

Consider a temporal loop on the lattice and let us multiply the
corresponding temporal links along the loop:

U0(n)U0(n + 0̂) · · ·U0(n + (L0 − 1)0̂)
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POLYAKOV LOOP

Under a gauge transformation g0(n), this product transforms as:

U0(n)U0(n + 0̂) · · ·U0(n + (L0 − 1)0̂)

↓

g0(n)U0(n) g†
0 (n + 0̂)g0(n + 0̂)︸ ︷︷ ︸

= 1

U0(n + 0̂) · · ·U0(n + (L0 − 1)0̂) g†
0 (n + L00̂)︸ ︷︷ ︸

= g†
0 (n)

↓

g0(n) U0(n)U0(n + 0̂) · · ·U0(n + (L0 − 1)0̂) g†0(n)
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POLYAKOV LOOP
Then, the trace of such a product of temporal links

Φ[U] ≡ 1
3tr U0(n)U0(n + 0̂) · · ·U0(n + (L0 − 1)0̂)

defines a gauge-invariant functional Φ[Ug0 ] = Φ[U], the Polyakov loop,
which can be averaged to define an observable 〈Φ[U]〉.

The physical relevance of 〈Φ[U]〉 lies in that

− 1
β

ln〈Φ[U]〉 = ∆F

represents the free-energy of a test color charge in the medium.

Thus :

{
if 〈Φ〉 = 0, then ∆F =∞ and the medium confines charges;
if 〈Φ〉 6= 0, then ∆F <∞ and the medium accepts charges.

U. Reinosa QuantFunc24 15 / 41



POLYAKOV LOOP
Then, the trace of such a product of temporal links

Φ[U] ≡ 1
3tr U0(n)U0(n + 0̂) · · ·U0(n + (L0 − 1)0̂)

defines a gauge-invariant functional Φ[Ug0 ] = Φ[U], the Polyakov loop,
which can be averaged to define an observable 〈Φ[U]〉.

The physical relevance of 〈Φ[U]〉 lies in that

− 1
β

ln〈Φ[U]〉 = ∆F

represents the free-energy of a test color charge in the medium.

Thus :

{
if 〈Φ〉 = 0, then ∆F =∞ and the medium confines charges;
if 〈Φ〉 6= 0, then ∆F <∞ and the medium accepts charges.

U. Reinosa QuantFunc24 15 / 41



POLYAKOV LOOP
Then, the trace of such a product of temporal links

Φ[U] ≡ 1
3tr U0(n)U0(n + 0̂) · · ·U0(n + (L0 − 1)0̂)

defines a gauge-invariant functional Φ[Ug0 ] = Φ[U], the Polyakov loop,
which can be averaged to define an observable 〈Φ[U]〉.

The physical relevance of 〈Φ[U]〉 lies in that

− 1
β

ln〈Φ[U]〉 = ∆F

represents the free-energy of a test color charge in the medium.

Thus :

{
if 〈Φ〉 = 0, then ∆F =∞ and the medium confines charges;
if 〈Φ〉 6= 0, then ∆F <∞ and the medium accepts charges.

U. Reinosa QuantFunc24 15 / 41



CENTER SYMMETRY

But how could 〈Φ[U]〉 vanish in the first place?

The Wilson action is symmetric under a more general class of gauge
transformations g(n), known as center transformations:

g(n + L00̂) = e±i2π/3g(n)

For those transformations, one has

Φ[Ug ] = e∓i2π/3Φ[U]

This symmetry, when realized, strongly constrains the value of 〈Φ[U]〉.
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CENTER SYMMETRY CONSTRAINT

Recall that the average is done over the Monte-Carlo ensemble E

〈Φ[U]〉E =

∑
Uµ∈E Φ[U]

Nconf

Let us now introduce a new ensemble Eg†
= {Ug†

µ |Uµ ∈ E}.
Then

〈Φ[U]〉E =

∑
Uµ∈Eg† Φ[Ug ]

Nconf

= e∓i2π/3

∑
Uµ∈Eg† Φ[U]

Nconf
= e∓i2π/3〈Φ[U]〉Eg†
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What can we deduce from 〈Φ[U]〉E = e∓i2π/3〈Φ[U]〉Eg† ?
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CENTER SYMMETRIC PHASE

What can we deduce from 〈Φ[U]〉E = e∓i2π/3〈Φ[U]〉Eg† ?

The MC simulation time is large
enough for the system to explore
the configuration space symmetri-
cally. In this case, Eg† ' E and
the above identity becomes a con-
straint on 〈Φ[U]〉E :

〈Φ[U]〉E ' e∓i2π/3〈Φ[U]〉E
which actually enforces it to be

〈Φ[U]〉E ' 0
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CENTER BROKEN PHASE

What can we deduce from 〈Φ[U]〉E = e∓i2π/3〈Φ[U]〉Eg† ?

The MC simulation time is not
large enough and the system gets
essentially stuck in one region of
the configuration space such that
Eg† 6= E . In this case, there is no
reason for 〈Φ[U]〉E to vanish and
the above identity is just a relation
between the averages over distinct
regions connected by the symme-
try. 0 2000 4000 6000 8000 10000

MC history
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TAKE-AWAY MESSAGE

The Polyakov loop 〈Φ[U]〉E is an order parameter for center symmetry.

Two crucial ingredients:

− Φ[U] transforms linearly: Φ[Ug ] = e∓i2π/3Φ[U];
− E is center-invariant in the symmetric phase: Eg† ' E .
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3. CORRELATORS AS ORDER PARAMETERS?
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LINK CORRELATORS

Suppose now that we want to compute link correlators:

〈Uµ1(n1)⊗ · · · ⊗ Uµp (np)〉

from which we could eventually access gauge-field correlators.

Is there any chance that any of those could be used as an order
parameters for center symmetry?

I shall focus on the one-point function 〈Uµ(n)〉 for simplicity and
slightly touch on the two-point function 〈Uµ1(n1)⊗ Uµ2(n2)〉.
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GAUGE FIXING
Important warning: the average 〈Uµ(n)〉 is not defined over the original
ensemble E but rather over a gauge-fixed ensemble EF :

〈Uµ(n)〉EF ≡
∑

Uµ∈EF
Uµ(n)

Nconf

In practice, EF is obtained by maximizing a given functional F [U]
along the gauge-orbits of the configurations in E .

Starting from Uµ ∈ E , one explores the gauge orbit Ug0
µ , until

a g0 is found that maximizes (locally) F [Ug0 ].
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SYMMETRY CONSTRAINT

Let us now proceed as in the case of the Polyakov loop and write

〈Uµ(n)〉EF =

∑
Uµ∈EF

Uµ(n)

Nconf

=

∑
Uµ∈Eg†

F
Ug
µ (n)

Nconf

= g(n)

∑
Uµ∈Eg†

F
Uµ(n)

Nconf
g†(n + µ̂)

= g(n)〈Uµ(n)〉
Eg†

F
g†(n + µ̂) .
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SYMMETRY CONSTRAINT

The identity
〈Uµ(n)〉EF = g(n)〈Uµ(n)〉

Eg†
F

g†(n + µ̂)

looks pretty similar to

〈Φ[U]〉E = e∓i2π/3〈Φ[U]〉Eg†

It is a linear relation connecting averages over two ensembles.

Can we deduce that 〈Uµ(n)〉EF is an order parameter for center
symmetry?

The answer actually depends on F !
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GENERIC GAUGE

A crucial ingregient in the case of 〈Φ[U]〉E was that Eg† ' E in the
symmetric phase.

In the case of 〈Uµ〉EF , do we have Eg†

F ' EF ?

A priori not: the configurations of Eg†

F maximize the functional F [Ug ]
which, for a generic choice of F [U], has no reason to be equal to F [U].
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GENERIC GAUGE

Then, for a generic choice of gauge, the configurations of EF and Eg†

F
correspond to different gauges, and the identity

〈Uµ(n)〉EF = g(n)〈Uµ(n)〉
Eg†

F
g†(n + µ̂)

just relates the one-point functions in two different gauges.

In this generic case, there is no actual constraint on 〈Uµ(n)〉EF

which is then no order parameter for center symmetry.
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CENTER-SYMMETRIC GAUGE

But what happens if a gauge functional F [U] is found such that

F [Ug ] = F [U]?
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CENTER-SYMMETRIC GAUGE

In this case, the configurations of Eg†

F and EF agree since they
maximize the same functional F [Ug ] = F [U].

The previous identity becomes

〈Uµ(n)〉EF = g(n) 〈Uµ(n)〉EF g†(n + µ̂)

that is a constraint on the possible values of 〈Uµ(n)〉EF .

Then, in this particular gauge, 〈Uµ(n)〉EF becomes a potential order
parameter for center-symmetry.
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4. STANDARD VS CENTER-SYMMETRIC
LANDAU GAUGE
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STANDARD LANDAU (SL) GAUGE

In the standard Landau (SL) gauge, the gauge-fixed configurations
are obtained by maximizing the functional

FSL[U] ≡Re tr
∑
n,µ

Uµ(n)

This functional is not invariant under center transformations

FSL[Ug ] = Re tr
∑
n,µ

g(n)Uµ(n)g†(n + µ̂)

= Re tr
∑
n,µ

g†(n + µ̂)g(n)Uµ(n) 6= FSL[U]

Therefore, there is no reason for 〈Uµ(n)〉ESL to qualify as an order
parameter for center symmetry.
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STANDARD LANDAU (SL) GAUGE

In fact the functional FSL[U] has already a number of symmetries:

− color rotations: Uµ(n)→ eiθataUµ(n)e−iθata ;

− charge conjugation: Uµ(n)→ U∗µ(n).

that impose 〈Uµ(n)〉ESL = η1, with η ∈ R and independent of n from
translation invariance. This implies

〈Uµ(n)〉ESL

(det 〈Uµ(n)〉ESL)1/3 = 1

irrespectively of the fate of center symmetry!
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CENTER-SYMMETRIC LANDAU (CSL) GAUGE

Consider now this other functional

FCSL[U] ≡Re tr
∑
µ

g†c (µ̂) Uµ(n) , with gc(µ̂) = e−i 4π
3

µ̂0
L0

λ3
2

We have a remnant of the previous symmetries:

− Abelian color rotations: Uµ(n)→ eiθj t j Uµ(n)e−iθj t j ,
with t j ∈ {λ3/2, λ8/2} the Abelian generators;

− charge conjugation: Uµ(n)→ eiπλ1/2U∗µ(n)e−iπλ1/2.
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CENTER-SYMMETRIC LANDAU (CSL) GAUGE

But more importantly, FCSL[U] is invariant under the center
transformation

g(n) = eiπ λ4
2 eiπ λ1

2 e
−i n0

L0
π

(
λ3+

λ8√
3

)
Let us check that this is indeed a center transformation:

g(n + L00̂) = eiπ λ4
2 eiπ λ1

2 e
−i n0

L0
π

(
λ3+

λ8√
3

)
e
−iπ
(
λ3+

λ8√
3

)

= g(n) exp

−iπ

 1 + 1
3 0 0

0 −1 + 1
3 0

0 0 −2
3




= ei 2π
3 g(n) .
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CENTER-SYMMETRIC LANDAU (CSL) GAUGE

Let us now check that g(n) leaves the functional FCSL[U] invariant:

FCSL[Ug ] =
∑
n,µ

Re tr g†c (µ̂)g(n)Uµ(n)g†(n + µ̂)

=
∑
n,µ

Re tr g†(n + µ̂)g†c (µ̂)g(n)Uµ(n)

It is easily verified that

g†(n + µ̂)g†c (µ̂)g(n) = g†c (µ̂)

and thus
FCSL[Ug ] = FCSL[U]

and 〈Uµ(n)〉ECSL becomes a potential order parameter for center sym.
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ORDER PARAMETER

In fact 〈Uµ(n)〉ECSL obeys the constraint

〈Uµ(n)〉ECSL = g(n) 〈Uµ(n)〉ECSL g†(n + µ̂)

which is solved as

〈Uµ(n)〉ECSL = η gc(µ̂) = η e−i 4π
3

µ̂0
L0

λ3
2

with η real, and independent of n from translation invariance.

This implies

〈Uµ(n)〉ECSL

(det 〈Uµ(n)〉ECSL)1/3 = e−i 4π
3

µ̂0
L0

λ3
2

[
vs 〈Uµ(n)〉ESL

(det 〈Uµ(n)〉ESL)1/3 = 1

]
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5. SIMULATION RESULTS
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CSL LINK AVERAGE

In the CSL gauge, the claim is that (L0 is the temportal extent)

M ≡ 〈U0(n)〉ECSL

(det 〈U0(n)〉ECSL)1/3 =

 e−i 2π
3L0

ei 2π
3L0

1


is an order parameter for center symmetry.

To test this, we generated two ensembles of 100 CSL configurations:
- one above the transition, corresponding to L0 = 6,
- one below the transition, corresponding to L0 = 8.
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CSL LINK AVERAGE

We looked at the imaginary parts of M11 and M22 and compared to
the symmetry constraints, over various lattice sites (10 here):

Im M11 and Im M22 behave as order parameters!
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SL LINK AVERAGE
Landau gauge data compatible with M ≡ 〈U0〉/(det 〈U0〉)1/3 = 1:

Not an order parameter in this case!
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A WORD ON THE TWO-LINK CORRELATORS

Similar symmetry constraints can be derived for higher correlators.

It is conventient to work with twisted link variables:

Ũµ(n) ≡ Ugc
µ (n) with gc(n) = e−i 4π

3
n0
L0

λ3
2

One finds for instance that, in the center-symmetric phase

〈(trλ3Ũ0(n1))(trλ3Ũ0(n2))〉CSL = 〈(trλ8Ũ0(n1))(trλ8Ũ0(n2))〉CSL

No other symmmetry ensures this when center symmetry is broken
(as opposed to the SL gauge).

U. Reinosa QuantFunc24 37 / 41



A WORD ON THE TWO-LINK CORRELATORS

Preliminary results:

See Paulo Silva’s talk for the connection to the gluon propagator in the
center-symmetric Landau gauge.
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INVARIANCE OF THE GAUGE-FIXED ENSEMBLE

The above discussion/results relied on Eg†

F ' EF in the symmetric
phase.

This might be difficult to realize, even in the CSL gauge because EF is
actually not the ensemble of ALL local maxima, but just a bunch of
them selected on each gauge orbit.

Let us test how good is Eg†

F ' EF satisfied (for our modest 100
configuration ensembles).
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NON-INVARIANCE OF THE SL GAUGE ENSEMBLE

Gauge-fixed ensemble ESL (plain dots) vs its center-transformed version Eg†

SL
(empty dots):

The gauge-fixed ensemble is not center-symmetric, neither at low T nor at
high T .
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INVARIANCE OF THE CSL GAUGE ENSEMBLE

Gauge-fixed ensemble ECSL (plain dots) vs its center-transformed version Eg†

CSL
(empty dots):

The gauge-fixed ensemble looks approximately center-symmetric at low T .
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CONCLUSIONS

− The question of knowing whether gauge-field or gauge-link correlators
can be used as order parameter for center symmetry depends on the
gauge.

− SL gauge correlators do not qualify as order parameters because center
symmetry does not constrain their values, but rather relates
them to correlators in another gauge.

− In contrast, correlators defined in the CSL gauge are constrained by the
symmetry and, therefore, qualify as order parameters.

− This places the CSL gauge as a privileged framework for functional
calculations at finite temperature.

− We have illustrated these considerations by implementing the CSL gauge
on the lattice and by evaluating the one-link average as well as the
two-link correlator which both show order parameter patterns.
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OUTLOOK

− Gluon propagator in the CSL gauge, see next talk.

− Simulate other temperatures.

− Increase the statistics, in particular to test Eg†

CSL ' ECSL.

− SU(2), include quarks, higher order correlators.
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THANK YOU!
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