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Strong interest for the evaluation of gluon correlation functions both
from the lattice or from the various continuum approaches:
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Strong interest for the evaluation of gluon correlation functions both
from the lattice or from the various continuum approaches:

(A), (AA), (AAA),

These are gauge-dependent building blocks from which one aims at
evaluating observables (O[A]) and study the physics.

Question: is it possible to access some physical features
more directly from the correlation functions?

Can the correlation functions probe the breaking of center symmetry
in Yang-Mills theories at finite temperature and thus the
confinement /deconfinement transition?
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This is an old question ...
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This is an old question ...
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Cucchieri and Mendes, PoS 183 (2014).

. to which we would like to contribute with some recent developments.
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This is in fact the continuation of some work that D. M. van Egmond
and myself presented @QFunQCD, Valencia, 2022.
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This is in fact the continuation of some work that D. M. van Egmond
and myself presented @QFunQCD, Valencia, 2022.

There, we argued that the Landau gauge correlators are maybe not
the most appropriate for probing the breaking of center symmetry.

We also introduced a new gauge, the center-symmetric Landau gauge,
that allows one to construct order parameters directly from the
gauge-field correlators.
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We illustrated the benefits of this gauge by showing some explicit
calculations of the one- and two-point functions (A) and (AA).
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We illustrated the benefits of this gauge by showing some explicit
calculations of the one- and two-point functions (A) and (AA).

For the two-point functions in particular, we found distinctive
behaviors at the transition:
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[van Egmond et al, SciPost Phys. 12 (2022) 087 & Phys.Rev.D 106 (2022) 7, 074005]
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These continuum calculations required some modelling, however,
because, the center-symmetric Landau gauge-fixed action is
not known in complete form due to the Gribov ambiguity.
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These continuum calculations required some modelling, however,
because, the center-symmetric Landau gauge-fixed action is
not known in complete form due to the Gribov ambiguity.

The results of 2022 used the Curci-Ferrari model to extend
phenomenologically the incomplete Faddeev-Popov
gauge-fixed action.
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In this talk, I would like to convince you of the benefits of the
center-symmetric Landau gauge without relying on any type
of modelling.
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In this talk, I would like to convince you of the benefits of the
center-symmetric Landau gauge without relying on any type
of modelling.

To this purpose, I shall consider the lattice framework which
allows for a full implementation of the center-symmetric
Landau gauge.
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In this talk, I would like to convince you of the benefits of the
center-symmetric Landau gauge without relying on any type
of modelling.

To this purpose, I shall consider the lattice framework which
allows for a full implementation of the center-symmetric
Landau gauge.

I shall consider SU(3) Yang-Mills theory but the analysis can
be easily extended to other groups.
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OUTLINE

1. Links, Plaquettes and All That.
2. Polyakov Loop and Center Symmetry.
3. Correlators as Order Parameters?

4. Standard vs Center-Symmetric Landau Gauge.

5. Simulation Results.
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1. LINKS, PLAQUETTES, AND ALL THAT




LINK VARIABLES

Consider a lattice whose sites are parametrized by a 4-vector n with
integer components n,, with 4 =0,1,2,3, and such that 0 < n, < L,.
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LINK VARIABLES

Consider a lattice whose sites are parametrized by a 4-vector n with
integer components n,, with 4 =0,1,2,3, and such that 0 < n, < L,.

We denote by i the 4-vector of components fi,, = d,,,. It connects a
given site n to its neighbouring site n + fi in the direction u:

=
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LINK VARIABLES

Consider a lattice whose sites are parametrized by a 4-vector n with
integer components n,, with 4 =0,1,2,3, and such that 0 < n, < L,.

To such an oriented link between neighbouring sites, one associates
a link variable U,(n) € SU(3):
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LINK VARIABLES

Consider a lattice whose sites are parametrized by a 4-vector n with
integer components n,, with 4 =0,1,2,3, and such that 0 < n, < L,.

Link variables replace the gauge-field of the continuum set-up:
Uy ~ e + 0(a?)

antaR 574



LINK VARIABLES

Consider a lattice whose sites are parametrized by a 4-vector n with
integer components n,, with 4 =0,1,2,3, and such that 0 < n, < L,.

Link variables replace the gauge-field of the continuum set-up:
Uy ~ e + 0(a?)

They are taken periodic in all directions: U,(n+ L,0) = U,(n).
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PLAQUETTES AND WILSON ACTION

With the links one can form more general constructs. For instance, to
a square loop going through n, n+ fi, n+ i+ 2 and n+ o:

A AN
n+v n+0+v

Up(n) | ¥

ni n+0

one associates a plaquette variable:

U (n) = Uu(n) Uy (n+ p) Ul (n + 2)Uf(n) € SU(3)
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PLAQUETTES AND WILSON ACTION

With the links one can form more general constructs. For instance, to
a square loop going through n, n+ fi, n+ fi 4+ 2 and n+ -

n+v n+0+v

Up(n) | ¥

ni n+0

Plaquettes are the basic variables entering the Wilson action:

SW[U]——ZZRetr Uy (n)]

n pu<v

a discretized, but still gauge-invariant, version of the Yang-Mills action
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GAUGE INVARIANCE

A gauge transformation is a periodic function gp(n) on the lattice,
taking values in SU(3). It acts on the links as

Un(n) = go(n)Un(n)gl(n + f) = U (n)
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GAUGE INVARIANCE

A gauge transformation is a periodic function gp(n) on the lattice,
taking values in SU(3). It acts on the links as

Up(n) = go(n) Uu(n)gd(n+ ) = U (n)

and on the plaquettes as

U (n) = g0(n) Uy (n)gd (n)
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GAUGE INVARIANCE

A gauge transformation is a periodic function gp(n) on the lattice,
taking values in SU(3). It acts on the links as

Up(n) = go(m)Up(n)gg(n+ ) = U (n)

and on the plaquettes as

U (n) = g0(n) Uy (n)gd (n)

This ensures that the the Wilson action is gauge invariant:

SwlU®] == ZZRetr [1 — go(n) Uy (n)g3 (n)] = Sw(U]

n pu<v
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OBSERVABLES

Observables are defined as averages of gauge-invariant functionals,
O[Ug] = O[U], with a probability weight given by e~ wlYl:

o[y = { DYoL e

[ DU, e=SwlV]
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OBSERVABLES

Observables are defined as averages of gauge-invariant functionals,
O[U&] = O[U], with a probability weight given by e~wlUl:

~ [DU, O[U] e wlY]
<O[U]> - f'DuU” e—SW[U]

On the lattice, such integrals are evaluated using Monte-Carlo
importance sampling;:

— one generates an ensemble of link configurations & = {U,,}
that follows the probability distribution e=SwlUl:

— then, the observables are computed as

o[u
ot ~ == _ o),

et T3 7



2. POLYAKOV LOOP AND CENTER SYMMETRY




POLYAKOV LOOP

Consider a temporal loop on the lattice and let us multiply the
corresponding temporal links along the loop:

-~
>

n n+0 n+26 n+36

Uo(n)Us(n + 0) - -+ Up(n + (Lo — 1)0)

U. Reinosa QuantFunc24 13 / 41



POLYAKOV LOOP

Under a gauge transformation gp(n), this product transforms as:

Uo(n) Uo(n -+ 6) <o Uo(n -+ ([_0 — 1)6)

i}
go(n)Un(n) gl (n + 0)go(n + 0) Us(n+0) - - Up(n + (Lo — 1)0) gl (n + Lo0)
N————
=1 =g (n)
1

go(n) Uo(n)Up(n +0)--- Up(n+ (Lo — 1)0) gi (n)
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POLYAKOV LOOP

Then, the trace of such a product of temporal links
1 A N
o[U] = §tr Uo(n)Up(n+0)--- Up(n+ (Lo — 1)0)

defines a gauge-invariant functional ®[U&] = ®[U], the Polyakov loop,
which can be averaged to define an observable (®[U]).
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POLYAKOV LOOP

Then, the trace of such a product of temporal links
1 A A~
o[U] = §tr Uo(n)Up(n+0)--- Up(n+ (Lo — 1)0)

defines a gauge-invariant functional ®[U&] = ®[U], the Polyakov loop,
which can be averaged to define an observable (®[U]).

The physical relevance of (®[U]) lies in that
1
5 n(@[U]) = AF

represents the free-energy of a test color charge in the medium.

Thus - if () =0, then AF = oo and the medium confines charges;
R T (®) # 0, then AF < 0o and the medium accepts charges.

Y,



CENTER SYMMETRY

But how could (®[U]) vanish in the first place?




CENTER SYMMETRY

But how could (®[U]) vanish in the first place?

The Wilson action is symmetric under a more general class of gauge
transformations g(n), known as center transformations:
g(n+ Lgb) = e2/3g(n)

For those transformations, one has

®[UE] = T2 30[U]
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CENTER SYMMETRY

But how could (®[U]) vanish in the first place?

The Wilson action is symmetric under a more general class of gauge
transformations g(n), known as center transformations:

g(n+ Lo0) = e*"*g(n)
For those transformations, one has

O[UE] = TP 30U
This symmetry, when realized, strongly constrains the value of (®[U]).

Y,



CENTER SYMMETRY CONSTRAINT

Recall that the average is done over the Monte-Carlo ensemble £

~ 2u,ee ®lU]
Nconf

(®[Ul)e =
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CENTER SYMMETRY CONSTRAINT

Recall that the average is done over the Monte-Carlo ensemble £

Yu,ee U]
(®[U])e = ﬁ

Let us now introduce a new ensemble £8' = {UﬁT U, €&}
Then

2 U,ecst U]

<¢[U]>5 B Neont
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CENTER SYMMETRY CONSTRAINT

Recall that the average is done over the Monte-Carlo ensemble £

Yu,ee U]
(®[U])e = ﬁ

Let us now introduce a new ensemble £8' = {UﬁT U, €&}
Then

2 U,ecst U]
Nconf
2 U,ecs! ®[U]

Nconf

(®[Ul)e =

— e:|2127r/3
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CENTER SYMMETRY CONSTRAINT

Recall that the average is done over the Monte-Carlo ensemble £

Yu,ee U]
(®[U])e = ﬁ

Let us now introduce a new ensemble £8' = {UﬁT U, €&}
Then

2 U,ecst U]

<¢[U]>5 B Neont

U
- e:F’.27r/3—ZU“eggT [ ]: eT2m3(o[U])

¥
Nconf 8

S,



What can we deduce from (®[U])e = eF27/3(d[U])
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CENTER SYMMETRIC PHASE

What can we deduce from (®[U])s = e¢i2”/3<d>[U]>5gf?

The MC SimUIation tlme iS la'rge Polyakov loop @ T =266 MeV
enough for the system to explore 005 —— Mo
the configuration space symmetri- .- ]
cally. In this case, £8' ~ & and " ]
the abOVG 1dent1ty becomes a con- % 2000 4000 6000 8000 10000
straint on (®[U])¢: ) e
(®[U])e =~ T3 (0[U])¢ ) 1
which actually enforces it to be ’ | ‘ | |
(©[U])e ~ 0

SR T8 T



CENTER BROKEN PHASE

What can we deduce from (®[U])e = e¢"2”/3<¢[U]>ggf?

The MC simulation time is not

Polyakov loop @ T =274 MeV

Modulus

large enough and the system gets .
essentially stuck in one region of

the configuration space such that ZZWWWWNWW

£&' + £. In this case, there is no "

reason for (®[U])¢ to vanish and

the above identity is just a relation

between the averages over distinct <o
regions connected by the symme- ’

try.

QuantFunc24
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TAKE-AWAY MESSAGE

The Polyakov loop (®[U])¢ is an order parameter for center symmetry.

Two crucial ingredients:

— ®[U] transforms linearly: ®[U8] = eT27/3¢[U];

— & is center-invariant in the symmetric phase: gt ~ €.

et 19 74T



3. CORRELATORS AS ORDER PARAMETERS?




LINK CORRELATORS

Suppose now that we want to compute link correlators:

(Un(m)® @ Uup(”p)>

from which we could eventually access gauge-field correlators.
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LINK CORRELATORS

Suppose now that we want to compute link correlators:

(Un(m)® @ Uup(”p)>

from which we could eventually access gauge-field correlators.

Could any of those be used as an order parameters for center
symmetry?

et T 741



LINK CORRELATORS

Suppose now that we want to compute link correlators:

(Un(m)® @ Uup(”p)>

from which we could eventually access gauge-field correlators.

Could any of those be used as an order parameters for center
symmetry?

I shall focus on the one-point function (U, (n)) for simplicity and
slightly touch on the two-point function (U, (n1) @ U,,(n2)).

U. Reinosa QuantFunc24 20 / 41



GAUGE FIXING

Important warning: the average (U,(n)) is not defined over the original
ensemble £ but rather over a gauge-fixed ensemble Ef:

U
(U, = oo )
conf
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GAUGE FIXING

Important warning: the average (U,(n)) is not defined over the original
ensemble £ but rather over a gauge-fixed ensemble Ef:

V)
(Uu(n))er = ZUHIEVL"(”)
conf

In practice, EF is obtained by maximizing a given functional F[U]
along the gauge-orbits of the configurations in £.

Starting from U,, € £, one explores the gauge orbit U£, until
a go is found that maximizes (locally) F[U#].
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SYMMETRY CONSTRAINT

Let us now proceed as in the case of the Polyakov loop and write

Su,eer Unln)
(Un(m)er = ==~

2 Ut (n)

Uees’ Th

Nconf
> Up(n)
= g(n) "5 &0+ 1)

= g(n){Uuln) 1 (n+ ).

U,Les;iT

Y,



SYMMETRY CONSTRAINT

The identity
(Unm)er = &(n)(Un(m) ot g(n+p)

looks pretty similar to

(®[U])e = eT27/3(O[U]) 1,1

It is a linear relation connecting averages over two ensembles.
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SYMMETRY CONSTRAINT

The identity
(U(n))er = g(n)(Up(n)) os18"(n + )

looks pretty similar to

(®[U])e = eT27/3(O[U]) 1,1

It is a linear relation connecting averages over two ensembles.

Can we deduce that (U,(n))e, is an order parameter for center
symmetry?

U. Reinosa
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SYMMETRY CONSTRAINT

The identity
(U(n))er = g(n)(Up(n)) os18"(n + )

looks pretty similar to

(®[U])e = eT27/3(O[U]) 1,1

It is a linear relation connecting averages over two ensembles.

Can we deduce that (U,(n))e, is an order parameter for center
symmetry?

The answer actually depends on F!

et T I



GENERIC GAUGE

A crucial ingregient in the case of (®[U])s was that €8’ ~ & in the
symmetric phase.
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GENERIC GAUGE

A crucial ingregient in the case of (®[U])s was that €8’ ~ & in the
symmetric phase.

In the case of (U,)g,, do we have EffT ~ Ep?
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GENERIC GAUGE

A crucial ingregient in the case of (®[U])s was that €8’ ~ & in the
symmetric phase.

In the case of (U,)g,, do we have Sf_fT ~ Ep?

A priori not: the configurations of Sﬁt maximize the functional F[U5]
which, for a generic choice of F[U], has no reason to be equal to F[U].
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GENERIC GAUGE

+
Then, for a generic choice of gauge, the configurations of & and Ef
correspond to different gauges, and the identity

(Un(m)er = g(n){Up(m) 51 g'(n+p)

just relates the one-point functions in two different gauges.
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GENERIC GAUGE

+
Then, for a generic choice of gauge, the configurations of & and Ef
correspond to different gauges, and the identity

(Un(m)er = g(n){Up(m) 51 g'(n+p)

just relates the one-point functions in two different gauges.

In this generic case, there is no actual constraint on (U, (n))e,
which is then no order parameter for center symmetry.

et T 7



CENTER-SYMMETRIC GAUGE

But what happens if a gauge functional F[U] is found such that

FIUE] = FU]?




CENTER-SYMMETRIC GAUGE

In this case, the configurations of SET and Ef agree since they
maximize the same functional F[U8] = F[U].
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CENTER-SYMMETRIC GAUGE

In this case, the configurations of EET and Ef agree since they
maximize the same functional F[U8] = F[U].

The previous identity becomes

(Uu(m)er = g(n) (Uu(n))e, g'(n + f)

that is a constraint on the possible values of (U,(n))g,.

U. Reinosa
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CENTER-SYMMETRIC GAUGE

In this case, the configurations of EET and Ef agree since they
maximize the same functional F[U8] = F[U].

The previous identity becomes

(Uu(m)er = g(n) (Uu(n))e, g'(n + f)

that is a constraint on the possible values of (U,(n))g,.

In this particular gauge, (U,(n))s, becomes a potential order
parameter for center-symmetry.

U. Reinosa

QuantFunc24
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4. STANDARD VS CENTER-SYMMETRIC
LANDAU GAUGE
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STANDARD LANDAU (SL) GAUGE

In the standard Landau (SL) gauge, the gauge-fixed configurations
are obtained by maximizing the functional

Fsi[U] = Retrz U.(n)
g

This functional is not invariant under center transformations

Fsp[U8] = Retng(n)UM(n)gT(n +[)

= RetrY_g'(n+ f1)g(n)Uu(n)# FsL[U]

mu

Therefore, there is no reason for (U, (n))gs, to qualify as an order
parameter for center symmetry.
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STANDARD LANDAU (SL) GAUGE

In fact the functional Fgr,[U] has already a number of symmetries:

— color rotations: U,(n) — @'t U,(n)e= "t

)

— charge conjugation: Uy(n) — Uj;(n).

that impose (U,(n))es, = 11, with n € R and independent of n from
translation invariance. This implies

(Uu(n))eq,
(det <Uu(n)>SSL)1/3

irrespectively of the fate of center symmetry!

=1

et T 7l



CENTER-SYMMETRIC LANDAU (CSL) GAUGE

Consider now this other functional

wl§
SIE
w,

FostlU] =Retr Y~ gl(f) Uu(n), with g(f) = e’
I

We have a remnant of the previous symmetries:

— Abelian color rotations: U,(n) — et Uu(n)e_"ejtj,
with t/ € {\3/2, A\g/2} the Abelian generators;

— charge conjugation: U,(n) — e™1/2 U;j(n)e*"’”\l/?

SeamtFasE B0 741



CENTER-SYMMETRIC LANDAU (CSL) GAUGE

But more importantly, Fcsp[U] is invariant under the center
transformation

. ) im0 (A
g(n) — e %e’ﬁ%e Lo ( 3+‘/>
Let us check that this is indeed a center transformation:

D VRPN lﬂw()\3+i) 7!7!'()\3“1’&)
e

g(n+ LOG) _ eITl'TeITI'Tl V3
T
= g(n)exps —im 0 -14+43% O
0 o -3
= Fg(n)
U. Reinosa QuantFunc24
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CENTER-SYMMETRIC LANDAU (CSL) GAUGE

Let us now check that g(n) leaves the functional Fcogr,[U] invariant:

FesL[U®] = Z Retrgl(2)g(n)U.(n)g'(n+ 1)

my

= > Retrg'(n+ f)gl(f)g(n)Uu(n)

mp

It is easily verified that

g'(n+)gl(R)g(n) = gl(f)
and thus
FcsL[U8] = Fesu[U]

and (U,(n))e., becomes a potential order parameter for center sym.
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ORDER PARAMETER

In fact (U,(n))eos, obeys the constraint

<Uu(n)>SCSL - g(”) <Uu(n)>SCSL gT(n + /,l)

which is solved as

w

—i

off
5
Nkt

~=
o

<Ult(n)>gcsL - 77gc(:a) =ne

with 7 real, and independent of n from translation invariance.
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ORDER PARAMETER

In fact (U,(n))eqs, obeys the constraint

<U/—L(n)>gCSL = g(n) <U,u(n)>ECSL gT(n + ,L'Z)

which is solved as

—i

s
NP

<U#(n)>ECSL =ng(fi) =ne

with 7 real, and independent of n from translation invariance.

This implies

(Uu(n))ecst — !

(det <Uu(n)>ECSL)1/3 a

wl§
s
I\J‘)’w
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ORDER PARAMETER

In fact (U,(n))eqs, obeys the constraint

<U/—L(n)>gCSL = g(n) <U,u(n)>ECSL gT(n + la)

which is solved as

—i

5
N

<U#(n)>ECSL =ng(fi) =ne

with 7 real, and independent of n from translation invariance.

This implies

U. Reinosa
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5. SIMULATION RESULTS




CSL LINK AVERAGE

In the CSL gauge, the claim is that (Lo is the temportal extent)

;2T

— =T

3L,

<U0(n)>5CSL _ ¢ 22w

M —
(det (Up(n)) ;)13 e

is an order parameter for center symmetry.

To test this, we generated two ensembles of 100 CSL configurations:
- one above the transition, corresponding to Ly = 6,
- one below the transition, corresponding to Ly = 8.
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CSL LINK AVERAGE

We looked at the imaginary parts of M1; and My and compared to
the symmetry constraints, over various lattice sites (10 here):

04—

-

o
N
T
—.—
— .
e
——
—.—
—o— -
e
—o— to-
—.—
| =

I '

c |

= 00

N

= [ ¢ +
_O'Zf +ii* + ¢ ¢ 1
j t ’i )
045 2 4 6 8 10

site

Im My1 and Im Moy behave as order parameters!

U. Reinosa QuantFunc24
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SL LINK AVERAGE
Landau gauge data compatible with M = (Up) /(det (Up))'/3 = 1:

A NRLALETE WE RATNTARTY
ST |

Not an order parameter in this case!
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A WORD ON THE TWO-LINK CORRELATORS

Similar symmetry constraints can be derived for higher correlators.

It is conventient to work with twisted link variables:

One finds for instance that, in the center-symmetric phase

((trA3Oo(m)) (trAsUo(n2))) st = ((trAs Uo(n)) (trAg Uo(n2))) csL

No other symmmetry ensures this when center symmetry is broken
(as opposed to the SL gauge).
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A WORD ON THE TWO-LINK CORRELATORS

Preliminary results:

-8

-3
~3

<D0, <Tsm 0>
5 L o
2 8 8
<}
<ULMT(0)>, <UamT(0)>
&5 6 6
5 3 8

-0.151

o,

-3

See Paulo Silva’s talk for the connection to the gluon propagator in the
center-symmetric Landau gauge.
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INVARIANCE OF THE GAUGE-FIXED ENSEMBLE

+
The above discussion/results relied on €8 =~ £f in the symmetric
phase.

This might be difficult to realize, even in the CSL gauge because Ef is
actually not the ensemble of ALL local maxima, but just a bunch of
them selected on each gauge orbit.

Let us test how good is g8 ~ Er satisfied (for our modest 100
configuration ensembles).
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NON-INVARIANCE OF THE SL GAUGE ENSEMBLE

:
Gauge-fixed ensemble &gy, (plain dots) vs its center-transformed version £

(empty dots):
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The gauge-fixed ensemble is not center-symmetric, neither at low T nor at
high T.

U. Reinosa
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INVARIANCE OF THE CSL GAUGE ENSEMBLE

¢
Gauge-fixed ensemble Ecgr, (plain dots) vs its center-transformed version 5§SL
(empty dots):
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The gauge-fixed ensemble looks approximately center-symmetric at low T.
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CONCLUSIONS

— The question of knowing whether gauge-field or gauge-link correlators
can be used as order parameter for center symmetry depends on the
gauge.

— SL gauge correlators do not qualify as order parameters because center
symmetry does not constrain their values, but rather relates
them to correlators in another gauge.

— In contrast, correlators defined in the CSL gauge are constrained by the
symmetry and, therefore, qualify as order parameters.

— This places the CSL gauge as a privileged framework for functional
calculations at finite temperature.

— We have illustrated these considerations by implementing the CSL gauge

on the lattice and by evaluating the one-link average as well as the
two-link correlator which both show order parameter patterns.
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OUTLOOK

Gluon propagator in the CSL gauge, see next talk.

— Simulate other temperatures.

:
Increase the statistics, in particular to test E&qp >~ Ecs.-

— SU(2), include quarks, higher order correlators.
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THANK YOU!
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