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IntroductionIntroduction

♦ Covering two topics in this presentation:
• A brief review of the physics case for the DUNE PDS, including 

the PoWER approach

• Progress on small-scale R&D relevant for PoWER at CSU

♦ Major input to physics requirements of PDS is DUNE TDR, 
Volume IV (DUNE FD Single-Phase Technology), Section 
5.16 (Appendix of PDS Chapter)
• Link:  https://arxiv.org/pdf/2002.03010

• Alex Himmel: “best write-up of DUNE FD PDS requirements”

♦ Physics case discussion focuses more on open questions 
beyond TDR studies

https://arxiv.org/pdf/2002.03010
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DUNE PDS:  Why, in a NutshellDUNE PDS:  Why, in a Nutshell

♦ “Why do we need the DUNE PDS?”

♦ From DUNE TDR, list of primary uses of PDS at DUNE:
• Nucleon decay:  fiducialization (and energy reconstruction) with t

0

– Noted that this is same energy regime as atmospheric neutrinos

• Supernova neutrinos:  burst triggering, TPC energy measurement 
and time resolution with t

0
, calorimetric energy reconstruction

• Beam neutrinos:  calorimetric energy reconstruction, tag Michels

♦ Some things not mentioned in TDR:
• Solar neutrinos  (similar energy regime to supernova neutrinos)

• Use of Cherenkov light for event reconstruction

• Neutron TOF (time of flight) energy measurements

• Detector calibrations
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TDR Synthesis (Details in Backup)TDR Synthesis (Details in Backup)

♦ Looking across all physics requirements set in the TDR, 
seems to culminate in following detector requirements: 
• Minimum light yield (at cathode):  > 0.5 PE/MeV (nucleon decay)

• Average light yield:  > 20 PE/MeV (supernova neutrinos)

• Average light yield:  < 21 PE/MeV (saturation for beam neutrinos)

• Timing resolution:  ~1 µs (all, though neglects Michel tagging)

♦ Sets basic requirements for light yield in PE/MeV; collection 
efficiency requirements will be different for PoWER
• For HD FD, > 20 PE/MeV translates to > 2.5% collection efficiency

♦ Some requirements do not seem well motivated/addressed:
• Not clear if saturation requirement needed 

• Michel tagging not well studied, timing resolution requirement 
inappropriate
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What is Missing?What is Missing?

♦ First, would be useful to update physics requirements with 
more updated DUNE simulation/reconstruction
• No reason to doubt any result from TDR studies, but still good idea

• Need simulation studies for optimizing PoWER design at any rate

♦ Several things not mentioned explicitly in TDR:
• Solar neutrinos, though needs for t

0
, energy reconstruction 

probably similar to those for supernova neutrinos

• Cherenkov light for better reconstructing event activity, including 
particle energies – requires much better timing resolution, O(ns)

• Measuring energy of neutrons using TOF (time of flight) – not 
clear how much we gain from this at DUNE FD for beam physics

• Detector calibration – some ideas on following slides
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220220
Rn Source Injection in LArRn Source Injection in LAr

♦ Idea for calibrating DUNE FD PDS: injection of radioactive 
sources directly into the LAr – specifically, radon:
• 222Rn explored at MicroBooNE (see here); useful if avoid LAr filter 

(copper getter removes 222Rn) but long-lived decay product 210Pb plates 
out on light detectors (long-term background source)

• 220Rn used in LXe dark matter detectors (see here) but not yet 
explored in LAr detectors (to knowledge of M. Mooney)

♦ Proposal by M. Mooney:  investigate 220Rn for DUNE FD and 
ND-LAr calibrations, with preliminary tests at both the 2x2 
ND-LAr prototype and ProtoDUNE II – detailed talk here
• Provides means to calibrate light yield visibility map throughout 

detector – hard to do with cosmics underground!

• Need to tag light from low-energy activity, more on later slide

https://arxiv.org/pdf/2203.10147.pdf
https://link.aps.org/accepted/10.1103/PhysRevD.95.072008
https://indico.fnal.gov/event/60867/contributions/272980/attachments/169538/227751/DUNE_CalibrationMeeting_23_08_01.pdf
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Calibrations w/ Calibrations w/ 212212Bi  →Bi  → 212212Po  →Po  → 208208PbPb

measure LAr flow... maybe

low-energy calibration

a ton of applications!

Image taken 
from here

https://link.aps.org/accepted/10.1103/PhysRevD.95.072008
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Calibrations w/ Calibrations w/ 212212Bi  →Bi  → 212212Po  →Po  → 208208PbPb

♦ 212Pb (parent isotope of 212Bi) half-life of 10.6 hours long enough to 
enable spreading throughout even large LArTPC detectors

• Convective currents will mix isotope into and throughout active volume

♦ 212Bi  → 212Po beta electron end point of 2.3 MeV produces charge 
yield well above charge readout threshold (100-300 keV)

♦ 212Po  → 208Pb alpha energy of 9 MeV ~300 ns later yields “huge” 
amount of light for t

0
 tag (reconstruct point-like activity in 3D)

• Roughly 350,000 photons produced at single point in detector

♦ Calibration applications (a sampling, potentially more):
• Extract spatial variations in light yield – tune “optical library”

• Light detector timing resolution studies (~300 ns between decays)

• Electron lifetime measurement

• Measure electric field (spatial offsets, recomb. E-field dependence)

• Mapping LAr flow via migration of decays through detector over time
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CATS TPCCATS TPC

♦ CATS (Colorado Argon Test Stand) – scaled down (cubic foot) 
single “unit” test of ND LArTPC charge readout (LArPix)
• Pixelated charge readout produces 3D images as raw data

• Operational at CSU since 2021; used for LArPix development and 
other detector R&D
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CATS CryostatCATS Cryostat

♦ CSU senior designer Jay Jablonski 
developed cryostat design for CATS
• Includes bucket to reduce LAr volume, 

separate vessel to house purity monitor, 
readout/utility flanges

• Purity monitor now external to cryostat
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Improved Purity, Improved Purity, 220220
Rn SourceRn Source

220Rn Source @ CATS

♦ More recently (last year), after upgrades to LAr filter 
(increased volume of filter material) and reducing LAr fill 
rate, have achieved electron lifetime of ~1 ms

♦ Have also installed 220Rn injection source (228Th source 
from Eckert & Ziegler) for tests of radon injection into liquid 
argon for calibration purposes
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Light Detectors for CATSLight Detectors for CATS

♦ Plan to install two light detectors in CATS:
• X-ARAPUCA-style light detector, as reference detector, on bottom

• PoWER-style light detector, as test of concept, on side

♦ Update:  X-ARAPUCA-style light detector now installed and 
works very well – used to confirm 220Rn injection works!
• Next include PoWER-style light detector – work in progress

D. Warner
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Light Detector InstallationLight Detector Installation
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Michel Electrons @ CATSMichel Electrons @ CATS

Charge
+

Light
Matching

of
Michel

Electrons

S. Fogarty
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Radon Injection @ CATSRadon Injection @ CATS

Evidence 
of Radon 

in TPC

S. Fogarty
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Conclusions/DiscussionConclusions/Discussion

♦ Reviewed TDR physics requirements for DUNE PDS

♦ Should consider updating physics requirements with more 
updated DUNE sim/reco to optimize PoWER detector design
• Also include additional considerations not included in TDR?

♦ Some brief thoughts from myself (opinions):
• Would be very interesting to see what we can do with improved 

timing resolution (Michel tagging, use of Cherenkov light)

• The “more light is better” argument may be true, but the strong 
physics motivation does not exist yet – it may be there, but will 
need further detailed simulation studies

• Given above point, seems very useful to pursue scalable design: 
make system as cheap as possible if physics case isn’t there, scale 
up light yield if it is – PoWER design seems well suited for this!

♦ CATS (Colorado Argon Test Stand) ready for PoWER R&D!
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BACKUP
SLIDES
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TDR: Nucleon DecayTDR: Nucleon Decay

♦ Physics deliverable:  PDS must determine t
0
 w/ ~1 µs timing 

resolution for events w/ visible energy greater > 200 MeV 
throughout the active volume w/ > 99% ID efficiency
• Time measurement is needed for event localization for optimal 

energy resolution and rejection of entering backgrounds

• Timing resolution requirement of ~1 µs set by TPC limitations

♦ The t
0
 ID efficiency of > 99% sets minimum light yield 

requirement of > 0.5 PE/MeV (> 1.3% collection efficiency)
• Requirement on light from “hardest” events (near cathode)
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TDR: Supernova NeutrinosTDR: Supernova Neutrinos

♦ Physics deliverable #1:  the PDS must be able to trigger on 
SNBs involving ~50 neutrino interactions in a FD module 
with ~100% efficiency, false positive rate of < 1/month
• This deliverable is most important for distant supernovae (at the 

far side of the Milky Way or in the Large Magellanic Cloud), where 
event triggering is focus

♦ Studies using ~10 neutrino interactions (pessimistic event 
rate for LMC) found ~80% burst trigger efficiency if average 
light yield > 7 PE/MeV (> 0.9% collection efficiency)
• Note redundancy of PDS trigger with TPC trigger – thus 80% for 

PDS alone is perhaps fine, especially given pessimistic assumptions 
in study

♦ Not leading consideration in setting PDS requirements
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TDR: Supernova NeutrinosTDR: Supernova Neutrinos

♦ Physics deliverable #2:  PDS must determine t
0
 w/ ~1 µs 

timing resolution for events for > 60% of the neutrinos in a 
typical SNB energy spectrum
• Correct measured energy for electron lifetime attenuation w/ t

0

• Provide more precise absolute event times for resolving short time 
features in the SNB neutrino event rate

♦ Significant improvement for collection efficiency of > 0.25%
• Equivalent to > 0.5 PE/MeV for ~60% of the detector volume

♦ Not leading consideration in setting PDS requirements
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TDR: Supernova NeutrinosTDR: Supernova Neutrinos

♦ Physics deliverable #3:  PDS should be able to provide a 
calorimetric energy measurement for low-energy events, like 
SNBs, complementary to the TPC energy measurement
• Goal is to achieve comparable energy resolution to that from TPC

• Take advantage of charge+light anti-correlation for energy 
reconstruction, redundancy if TPC offline (e.g. purity issues)

♦ Lowest-energy (< 7 MeV) supernova neutrinos achieve 
similar energy resolution for TPC and PDS when average 
light yield > 20 PE/MeV (collection efficiency > 2.5%)
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TDR: Beam NeutrinosTDR: Beam Neutrinos

♦ Physics deliverable #1:  PDS should be able to provide a 
calorimetric energy measurement for high-energy events, 
like LBNF beam neutrinos, complementary to the TPC 
energy measurement
• Cross-check that reduces systematic uncertainties

• PDS may improve energy resolution for “some types of events”

♦ PDS channel saturation fraction focused on for study, 
claiming < 20% required (< 21 PE/MeV or < 2.6% col. eff.)
• Driven by ability to apply corrections for energy measurements
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TDR: Beam NeutrinosTDR: Beam Neutrinos

♦ Physics deliverable #2:  PDS should be able to identify events 
with Michel electrons from muon and pion decays
• The identification of Michel electrons can improve background 

rejection for both beam neutrinos and nucleon decay searches

• Utilize ~2.2 μs time constant of Michel decay to tag

• Michel tagging improves further when doping argon with xenon, as 
light from Michel electron no longer buried in late light (~1.6 μs 
time constant) from parent muon

♦ No DUNE FD studies carried out to support setting any 
particular physics requirement on PDS
• Studies from LArIAT referenced as “proof of principle”

• Timing resolution requirement would need to be much better than 
one set by other considerations, O(ns) instead of ~1 μs
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TDR: Enhancing UniformityTDR: Enhancing Uniformity

♦ Two options listed in TDR to enhance light yield uniformity:
• Coated reflector foils on TPC cathode (improve “hardest” events)

• Doping argon with xenon (shifts late light to prompt light)

♦ Both approaches mitigate the impact of a short Rayleigh 
scattering length (~60 cm assumed in TDR study)
• Convert 127 nm scintillation photons to longer wavelength photons 

with a significantly longer Rayleigh scattering length

♦ Both relevant for PoWER PDS concept
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Solar NeutrinosSolar Neutrinos

♦ Also sensitive to other low-energy neutrinos:  solar neutrinos
• 8B solar neutrinos

• hep solar neutrinos

♦ Challenging at DUNE due to backgrounds, but still promising!

DUNE Preliminary
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220220Rn Injection SummaryRn Injection Summary

♦ Exploring injection of 220Rn into argon for calibrations 
making use of correlated 212Bi + 212Po decays (beta + alpha) at 
DUNE FD (and also DUNE ND-LAr)
• Cost-effective way to calibrate spatial variations in light yield, 

monitor electric field distortions, and validate CFD model (et al.)

♦ Test w/ 220Rn at CSU R&D LArTPC to ensure viability
• Already have ~30 kBq 228Th source and working charge readout; 

installing light detector this summer prior to test of 220Rn injection

♦ Proposal on table to test at ProtoDUNE II and/or ND-LAr 2x2 
prototype in early 2025 (or later)
• Should be straightforward to introduce source into LAr after the 

LAr filters via separate gas line (using additional filter for GAr)

♦ Will continue to study potential deployment in DUNE FD
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