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Introduction

¢ Covering two topics in this presentation:

* A brief review of the physics case for the DUNE PDS, including
the POWER approach

* Progress on small-scale R&D relevant for POWER at CSU

¢ Major input to physics requirements of PDS is DUNE TDR,
Volume IV (DUNE FD Single-Phase Technology), Section
5.16 (Appendix of PDS Chapter)
* Link: https://arxiv.org/pdf/2002.03010
* Alex Himmel: “best write-up of DUNE FD PDS requirements”

¢ Physics case discussion focuses more on open questions
beyond TDR studies


https://arxiv.org/pdf/2002.03010

¢ “Why do we need the DUNE PDS?”

¢ From DUNE TDR, list of primary uses of PDS at DUNE:

Nucleon decay: fiducialization (and energy reconstruction) with t_

— Noted that this is same energy regime as atmospheric neutrinos

Supernova neutrinos: burst triggering, TPC energy measurement
and time resolution with t _, calorimetric energy reconstruction

Beam neutrinos: calorimetric energy reconstruction, tag Michels

¢ Some things not mentioned in TDR:

Solar neutrinos (similar energy regime to supernova neutrinos)
Use of Cherenkov light for event reconstruction
Neutron TOF (time of flight) energy measurements

Detector calibrations



(\ { TDR Synthesis (Details in Backup)

NEUTRINO

¢ Looking across all physics requirements set in the TDR,
seems to culminate in following detector requirements:

* Minimum light yield (at cathode): > 0.5 PE/MeV (nucleon decay)
* Average light yield: > 20 PE/MeV (supernova neutrinos)

* Average light yield: < 21 PE/MeV (saturation for beam neutrinos)
* Timing resolution: ~1 us (all, though neglects Michel tagging)

¢ Sets basic requirements for light yield in PE/MeV; collection
efficiency requirements will be different for POWER

* For HD FD, > 20 PE/MeV translates to > 2.5% collection efficiency

¢ Some requirements do not seem well motivated/addressed:
* Not clear if saturation requirement needed

* Michel tagging not well studied, timing resolution requirement
inappropriate



DEEP UNDERGROUND
NEUTRINO EXPERIMENT

¢ First, would be useful to update physics requirements with
more updated DUNE simulation/reconstruction

* No reason to doubt any result from TDR studies, but still good idea

* Need simulation studies for optimizing POWER design at any rate

¢ Several things not mentioned explicitly in TDR:

Solar neutrinos, though needs for t _, energy reconstruction
probably similar to those for supernova neutrinos

Cherenkov light for better reconstructing event activity, including
particle energies — requires much better timing resolution, O(ns)

Measuring energy of neutrons using TOF (time of flight) — not
clear how much we gain from this at DUNE FD for beam physics

Detector calibration — some ideas on following slides
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¢ Idea for calibrating DUNE FD PDS: injection of radioactive
sources directly into the LAr — specifically, radon:

*  ***Rn explored at MicroBooNE (see here); useful if avoid LAr filter

(copper getter removes ~ Rn) but long-lived decay product *'°Pb plates
out on light detectors (long-term background source)

220

. Rn used in LXe dark matter detectors (see here) but not yet
explored in LAr detectors (to knowledge of M. Mooney)

¢ Proposal by M. Mooney: investigate ~~ Rn for DUNE FD and
ND-LAr calibrations, with preliminary tests at both the 2x2
ND-LAr prototype and ProtoDUNE II — detailed talk here

* Provides means to calibrate light yield visibility map throughout
detector — hard to do with cosmics underground!

* Need to tag light from low-energy activity, more on later slide


https://arxiv.org/pdf/2203.10147.pdf
https://link.aps.org/accepted/10.1103/PhysRevD.95.072008
https://indico.fnal.gov/event/60867/contributions/272980/attachments/169538/227751/DUNE_CalibrationMeeting_23_08_01.pdf

DEEP UNDERGROUND
NEUTRINO EXPERIMENT

BRM Calibrations wy/ #2Bi — #2Po — 2**Pb

220RnPo «-decays: measure LAr flow... maybe 220Rn

212Ppb B--decay: low-energy calibration 55.6s

212BiPo decay: a ton of applications!
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https://link.aps.org/accepted/10.1103/PhysRevD.95.072008

(\ Calibrations w/ ““Bi — **Poi—~ “*°Pb

NEUTRINO

¢ “"Pb (parent isotope of ~Bi) half-life of 10.6 hours long enough to
enable spreading throughout even large LArTPC detectors

* Convective currents will mix isotope into and throughout active volume

¢ “"Bi - ““Po beta electron end point of 2.3 MeV produces charge
yield well above charge readout threshold (100-300 keV)

208

¢ “"Po — *°Pb alpha energy of 9 MeV ~300 ns later y1e1ds “huge”
amount of light for t_ tag (reconstruct point-like activity in 3D)

* Roughly 350,000 photons produced at single point in detector

¢ Calibration applications (a sampling, potentially more):
« Extract spatial variations in light yield — tune “optical library”
* Light detector timing resolution studies (~300 ns between decays)
* Electron lifetime measurement
 Measure electric field (spatial offsets, recomb. E-field dependence)

* Mapping LAr flow via migration of decays through detector over time 8



DUVE CATS TPC

NEUTRINO EXPERIMENT

¢ CATS (Colorado Argon Test Stand) — scaled down (cubic foot)
single “unit” test of ND LArTPC charge readout (LArPix)

* Pixelated charge readout produces 3D images as raw data

* Operational at CSU since 2021; used for LArPix development and
other detector R&D 9
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DEEP UNDERGROUN CATS TPC

NEUTRINO EXPERIMENT

302.83 Drift Length

¢ CATS (Colorado Argon Test Stand) — scaled down (cubic foot)
single “unit” test of ND LArTPC charge readout (LArPix)

* Pixelated charge readout produces 3D images as raw data

* Operational at CSU since 2021; used for LArPix development and
other detector R&D 10



DUVE CATS Cryostat

NEUTRINO EXPERIMENT

¢ CSU senior designer Jay Jablonski
developed cryostat design for CATS

* Includes bucket to reduce LAr volume,
separate vessel to house purity monitor,
readout/utility flanges

* Purity monitor now external to cryostat
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¢ More recently (last year), after upgrades to LAr filter
(increased volume of filter material) and reducing LAr fill
rate, have achieved electron lifetime of ~1 ms

¢ Have also installed 22°Rn injection source (>28Th source
from Eckert & Ziegler) for tests of radon injection into liquid
argon for calibration purposes

12
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¢ Plan to install two light detectors in CATS:
* X-ARAPUCA-style light detector, as reference detector, on bottom
 PoWER-style light detector, as test of concept, on side

¢ Update: X-ARAPUCA-style light detector now installed and
works very well — used to confirm “*’Rn injection works!
* Next include POWER-style light detector — work in progress

13
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DEEP UNDERGROUND

NEUTRINO EXPERIMENT

To allow for reconstructing drift coordinate of activity in TPC,
we installed a custom light detector, designed at CSU, based
on X-Arapuca technology (not included in SingleCube TPC
kit).

e Components:
* 6 SiPMs on the end independently readout
* pTP-coated dichroic filters and wavelength shifting bar

e Shifts LAr scintillation light to visible range for detection
with Hamamatsu SiPMs (same as used in DUNE)

Light detector is s m . .
inserted into a slot in View inside TPC after TPC after installing

the bottom of the TPC installing light detector light detector

Cathode Field cage

. _X-Arapuca____

14
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LAr Run w/ Radon Injection + TPC
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B Conclusions/Discussion
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¢ Reviewed TDR physics requirements for DUNE PDS

¢ Should consider updating physics requirements with more
updated DUNE sim/reco to optimize POWER detector design

* Also include additional considerations not included in TDR?

¢ Some brief thoughts from myself (opinions):

* Would be very interesting to see what we can do with improved
timing resolution (Michel tagging, use of Cherenkov light)

* The “more light is better” argument may be true, but the strong
physics motivation does not exist yet — it may be there, but will
need further detailed simulation studies

* Given above point, seems very useful to pursue scalable design:
make system as cheap as possible if physics case isn’t there, scale
up light yield if it is — POWER design seems well suited for this!

¢ CATS (Colorado Argon Test Stand) ready for POWER R&D!



BACKUP
SLIDES
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DUV TDR: Nucleon Decay;

NIEUT.RIINOHQ-{ PERIMENT

¢ Physics deliverable: PDS must determine t w/ ~1 us timing

resolution for events w/ visible energy greater > 200 MeV
throughout the active volume w/ > 99% ID efficiency

* Time measurement is needed for event localization for optimal
energy resolution and rejection of entering backgrounds

* Timing resolution requirement of ~1 us set by TPC limitations
¢ Thet ID efficiency of > 99% sets minimum light yield
requirement of > 0.5 PE/MeV (> 1.3% collection efficiency)

* Requirement on light from “hardest” events (near cathode)

CPA Light yield (PE/MeV) Collection Efficiency (%) Efficiency at the CPA (%)

0.09 0.24 93.8 =04
0.28 0.75 97.7+ 04
0.33 0.88 98.4 £ 0.2

0.50 1.3 98.9 £ 0.2 19




(\ TDR: Supernova Neutrinos

NEUTRINO

¢ Physics deliverable #1: the PDS must be able to trigger on
SNBs involving ~50 neutrino interactions in a FD module
with ~100% efficiency, false positive rate of < 1/month
* This deliverable is most important for distant supernovae (at the

far side of the Milky Way or in the Large Magellanic Cloud), where
event triggering is focus

¢ Studies using ~10 neutrino interactions (pessimistic event
rate for LMC) found ~80% burst trigger efficiency if average
light yield > 7 PE/MeV (> 0.9% collection efficiency)
* Note redundancy of PDS trigger with TPC trigger — thus 80% for

PDS alone is perhaps fine, especially given pessimistic assumptions
in study

¢ Not leading consideration in setting PDS requirements
20
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¢ Physics deliverable #2: PDS must determine t w/ ~1 us

timing resolution for events for > 60% of the neutrinos in a
typical SNB energy spectrum

» Correct measured energy for electron lifetime attenuation w/ t_

* Provide more precise absolute event times for resolving short time
features in the SNB neutrino event rate

¢ Significant improvement for collection efficiency of > 0.25%
* Equivalent to > 0.5 PE/MeV for ~60% of the detector volume

¢ Not leading consideration in setting PDS requirements

21
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¢ Physics deliverable #3: PDS should be able to provide a
calorimetric energy measurement for low-energy events, like
SNBs, complementary to the TPC energy measurement

* Goal is to achieve comparable energy resolution to that from TPC

» Take advantage of charge-+light anti-correlation for energy
reconstruction, redundancy if TPC offline (e.g. purity issues)

¢ Lowest-energy (< 7 MeV) supernova neutrinos achieve
similar energy resolution for TPC and PDS when average
light yield > 20 PE/MeV (collection efficiency > 2.5%) 29



g8 TDR: Beam Neutrinos

NIEUT.RIINOHQ-{ PERIMENT

¢ Physics deliverable #1: PDS should be able to provide a
calorimetric energy measurement for high-energy events,
like LBNF beam neutrinos, complementary to the TPC
energy measurement

* Cross-check that reduces systematic uncertainties
* PDS may improve energy resolution for “some types of events”

¢ PDS channel saturation fraction focused on for study,
claiming < 20% required (< 21 PE/MeV or < 2.6% col. eff.)

* Driven by ability to apply corrections for energy measurements

Avg. Light Yield (PE/MeV) Collection Efficiency (%) Saturation Fraction (%)

6 0.88 6
13 1.8 13
21 2.6 20

28 3.5 24 23




g8 TDR: Beam Neutrinos

NIEUT.RIINOHQ-{ PERIMENT

¢ Physics deliverable #2: PDS should be able to identify events
with Michel electrons from muon and pion decays

* The identification of Michel electrons can improve background
rejection for both beam neutrinos and nucleon decay searches

« Utilize ~2.2 us time constant of Michel decay to tag

* Michel tagging improves further when doping argon with xenon, as
light from Michel electron no longer buried in late light (~1.6 ps
time constant) from parent muon

¢ No DUNE FD studies carried out to support setting any
particular physics requirement on PDS
* Studies from LArIAT referenced as “proof of principle”

* Timing resolution requirement would need to be much better than

one set by other considerations, O(ns) instead of ~1 us
24
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¢ Two options listed in TDR to enhance light yield uniformity:
* Coated reflector foils on TPC cathode (improve “hardest” events)

* Doping argon with xenon (shifts late light to prompt light)

¢ Both approaches mitigate the impact of a short Rayleigh
scattering length (~60 cm assumed in TDR study)

* Convert 127 nm scintillation photons to longer wavelength photons
with a significantly longer Rayleigh scattering length

¢ Both relevant for POWER PDS concept o5



DU\ Solar Neutrinoes

NEUTRINO EXPERIMENT

DUNE Preliminary
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¢ Also sensitive to other low-energy neutrinos: solar neutrinos

+ 3B solar neutrinos

* hep solar neutrinos

¢ Challenging at DUNE due to backgrounds, but still promising! 26



B  °°°Rn Injection Summary

NIEUT.RI.NO IQ-: PERIMEN

¢ Exploring injection of “’Rn into argon for calibrations

making use of correlated ““Bi + = Po decays (beta + alpha) at
DUNE FD (and also DUNE ND-LATr)

* Cost-effective way to calibrate spatial variations in light yield,
monitor electric field distortions, and validate CFD model (et al.)

¢ Test w/ ~""Rn at CSU R&D LArTPC to ensure viability

* Already have ~30 kBq ***Th source and working charge readout;
installing light detector this summer prior to test of “*’Rn injection

¢ Proposal on table to test at ProtoDUNE II and/or ND-LAr 2x2
prototype in early 2025 (or later)
* Should be straightforward to introduce source into LAr after the
LAr filters via separate gas line (using additional filter for GAr)

¢ Will continue to study potential deployment in DUNEFD
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