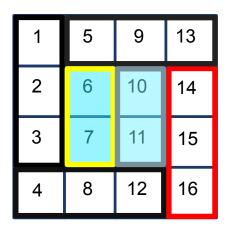
Update about SiPMs and readout electronics

G. Botogoske, F. Di Capua

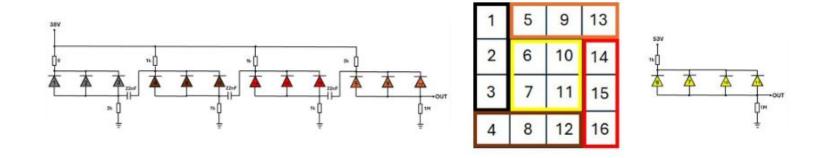
Thanks to : Antonio Vanzanella , Lucca Pagliuso and Roberto Ferreira dos Santos



Photon Detection Unit in PoWER

- It should be designed in order to detect converted photons by PEN (420 nm) and **also to directly detect VUV photons** produced by interactions in LAr buffer
- Demonstration of VETO capabilities of PoWER PDS is very important and it will be the main goal of next small scale prototypes
- PoWER photon sensor should be composed by SiPMs densitive down to VUV region and to standard Visible sensitive SiPMs giving two output channels
- Unbalance of two channel signals allow to disentangle background events from internal detector events

Design of the first PoWER light detection prototype

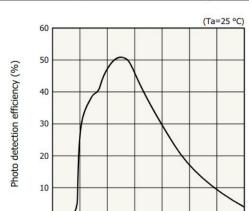


- Assembly and test of a 4×4 matrix with central 2×2 made by
 Hamamatsu VUV4 S13370 and 12 lateral S14160 visible SiPMs
- Each SiPM is 6 mm × 6 mm and can be directly soldered on PCB
- Development of a primary PCB for SIPMs housing and a second connected to first one for the implementation of the ganging schema
- The SiPMs order executed by Campinas, waiting to receive the samples

Setup Ganging

12 VIS SiPMs: 3 SiPMs are passively parallel-ganged; each triplet is then passively series-ganged.

4 VUV SiPMs: 4 SiPMs are passively parallel-ganged



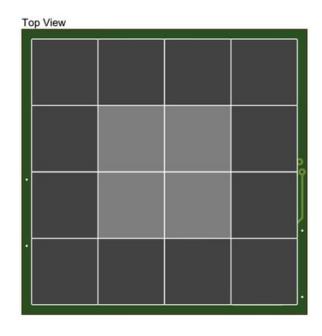
S14160-6050HS for visible light detection

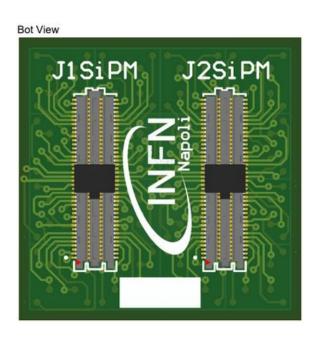
Parameter		Symbol	S14160/S14161 -3050HS-04, -08	S14160/S14161 -4050HS-06	S14160/S14161 -6050HS-04	unit	
Spectral response range		λ	()	nm			
Peak sensitivity wavelength		λр	450				
Photon detection efficiency at λp*3		PDE	50				
Breakdown voltage		VBR	38				
Recommended operating voltage*4		Vop	VBR + 2.7				
Vop variation between channels in one product*5	Тур.	1 65		V			
	Max.	-	0.2				
Dark current	Тур.	ID	0.6	1.1	2.5	μА	
	Max.	ID	1.8	3.3	7.5		
Crosstalk probability		-	7				
Terminal capacitance		Ct	500 900 2000		2000	pF	
Gain		M	2.5 × 10 ⁶				
Temperature coefficient of recommended reverse voltage		ΔΤVορ	34				

N pixels: 14331

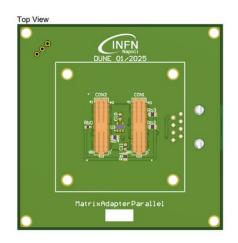
Capacitance per pixel ~ 150 fF, Total Capacitance = 2000pF

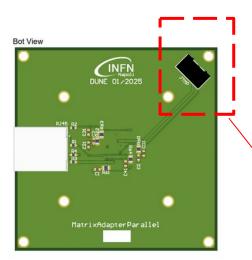
S13370-6050VN for VUV detection


Electrical and optical characteristics (Typ. Ta=25 deg C, Over voltage=4.0V Unless otherwise noted)

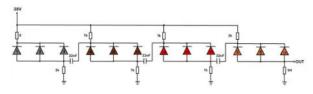

	Symbol	S13370				
Parameters		-3050CN	-3075CN	-6050CN	-6 <mark>075CN</mark>	unit
Spectral response range	λ	120 to 900				
peak sensitivity wavelength	λр	500				nm
Photon detection efficiency at λp^{*2}	PDE	35	40	35	40	%
Break down Voltage	VBR	53 +/-5				
Recommended operating voltage *3	Vop	VBR + 4				٧
Dark count typ.		1.0 4.0			Mana	
max.		3.0		12.0		Mcps
Crosstalk probability	, -	3	5	3	5	%
Terminal capacitance	Ct	320		1280		pF
Gain	М	2.55x10 ⁶	5.8x10 ⁶	2.55x10 ⁶	5.8x10 ⁶	-
Temperature coefficient of recommended reverse voltage	ΔΤVορ	54 (around the room temperature)				mV/℃

N pixels: 14336

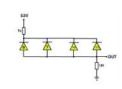

Capacitance per pixel ~ 100 fF, Total Capacitance = 1300pF


SiPM matrix board to host SiPMs

Ganging board

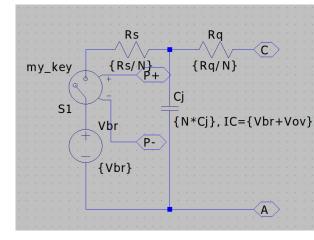


→2 output channels: one VUV and other VIS

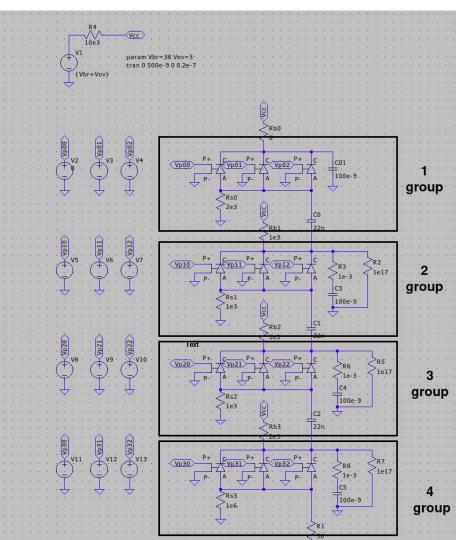

Capacitance per channel:

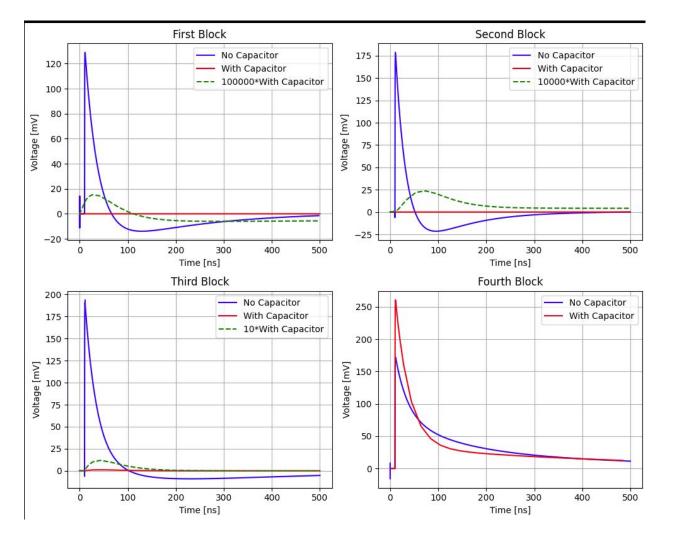
VIS: ~ 1500pF

VUV: 3840

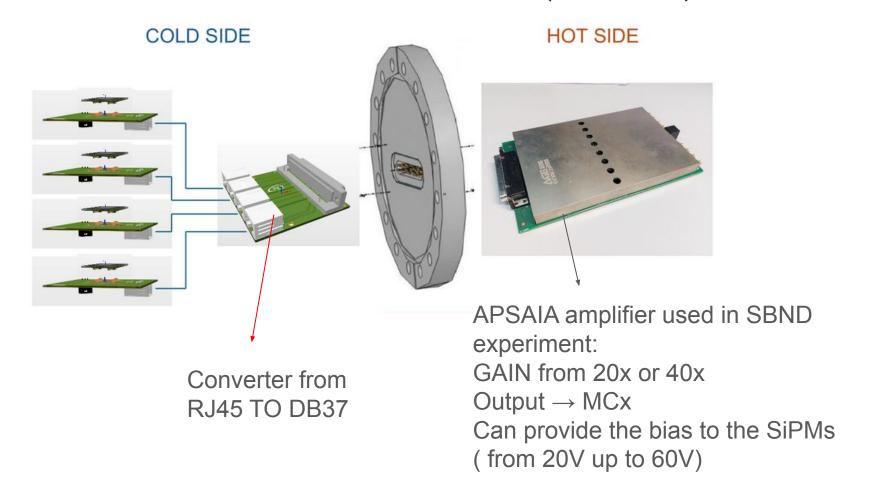


Temperature sensor: TMP37

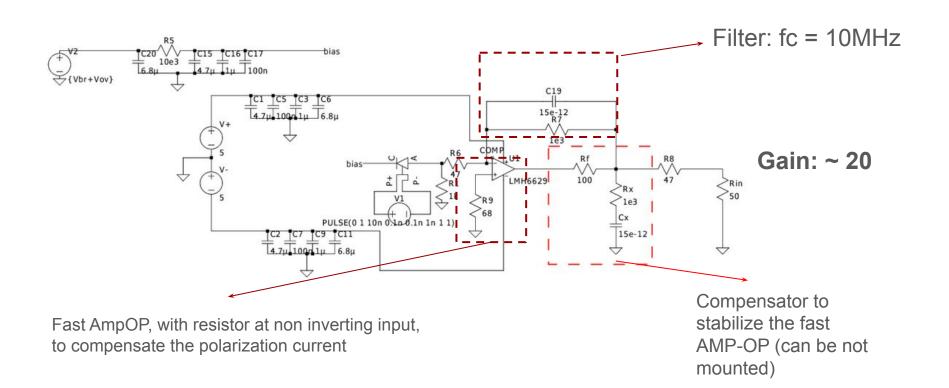



Spice Simulation

SiPM model:



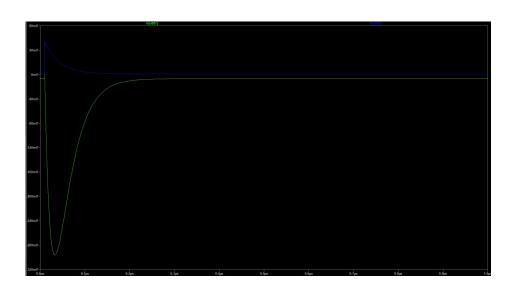
Rq (quenching resistor) = $150k\Omega$ for Hammamatsu 50 um pixel pitch Cj = Junction Capacitence Rs (SiPM conducting resistance) ~ $1k\Omega$ Rk (Non conducting resistance) ~ $1M\Omega$

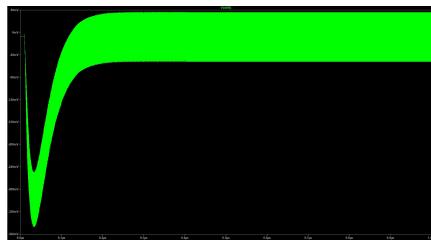


Full Chain to read-out four 4×4 matrices (8 channels)

In alternative: test of cold amplifier in Naples

In case of high noise with APSAIA configuration, we are developing a cold-amplifier and we are going to test it with VUV SiPMs




Summary

- Designed electronics for a 4×4 PoWER prototype tile (PCB production in next month)
- Order of Hamamatsu SiPMs done,
- First test of electronics this summer
- Assembly of matrices as soon we will receive Hamamatsu SiPMs
- Alternative cold amplifer is under test
- Alternative light readout with FBK SIPMs

The compensator

w/COMPENSATOR n/COMPENSATOR

