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LArTPC:
Full simulation and reconstruction chain in this workshop

Event 
Generation

Event 
Propagation
(Transport)

Low-Level 
Reconstruction

High-Level 
Reconstruction

Detector 
Simulation

GENIE (Atm Nu, Beam Nu)
MARLEY (Supernova Nu)
Geant4 (p,π,e,γ,K,μ,…)
Primary interaction simulation

Geant4:
How the simulated particle propagates in 
a given medium.

Geant4:
Given the simulated interaction, how my 
simulated detector "would see"?
Requires a detector geometry.
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LArTPC:
Full simulation and reconstruction chain in this workshop
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MARLEY (Supernova Nu)
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Primary interaction simulation

Geant4:
How the simulated particle propagates in 
a given medium.

Geant4:
Given the simulated interaction, how my 
simulated detector "would see"?
Requires a detector geometry.

This Section!!!

Key references: Pandora ProtoDUNE paper 

Pandora MicroBooNE paper
Credit: These slides build on previous

LArSoft workshop slides by Andrew Smith-Jones

https://arxiv.org/abs/2206.14521
https://link.springer.com/article/10.1140/epjc/s10052-017-5481-6
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Session Overview

1. Introduction to Pandora
2. Running the Reconstruction
3. Pandora Algorithms
4. Studying/Debugging the Reconstruction 



1. Introduction to Pandora
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• Evolving detector technologies, with a general trend towards imaging neutrino interactions
• Emphasis on identifying and characterizing individual visible particles

• Physics sensitivity now depends critically on both hardware and software
• Need a sophisticated event reconstruction to harness information in the images

• Aim to reconstruct hierarchy of particles of identified types, with measured four-momenta
• “Particle flow” reconstruction

CDHS NoVA
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ProtoDUNE-SP

Neutrino detectors
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LArTPC detectors

• Charged particles deposit

ionization trails in liquid argon

• Ionization electrons drift in an 

applied electric field

• Electrons are detected by a series 

of readout planes (wire planes 

in this example)

• LArTPC detectors:
• Past: ICARUS, ArgoNeuT,

ProtoDUNE-SP/DP, MicroBooNE

• Current: ProtoDUNE-HD, 
ICARUS@SBN, ICARUS

• Coming soon: SBND, ProtoDUNE-VD
arxiv:1612.05824

https://arxiv.org/abs/1612.05824
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The conversion of raw LArTPC images into analysis- 

level quantities:

• Low-level steps:
• Noise filtering

• Signal processing

• Pattern recognition:
• The bit you do by eye!

• Turn images into sparse 2D hits

• Assign 2D hits to clusters

• Match features between planes

• Output a hierarchy of 3D particles

• High-level characterisation:
• Particle identification

• Neutrino flavour and interaction type

• Neutrino energy, etc…

LArTPC 
detectors
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Filter out external 
noise, correct 
some distortions

T. Yan
g (IC

H
EP

 2016)

Hit finding

Fit clean waveform 
with N Gaussians, 
where N is number 
of peaks in a pulse. 
Each Gaussian 
represents a hit.

Signal processing

Convert digitized TPC 
waveform to number of 
ionization electrons 
passing through a wire 
plane at a given time (via 
deconvolution)

Event reconstruction – low-level
Noise filtering

Processed 

waveforms 

Reconstructed hits
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L. Whitehead

Output from hit finding
Candidate 1 GeV π+ event

π+ track (purple) comes in from 

left and produces π0 decay photon 

showers (red and black)

• Main aims of the pattern recognition step are to:
• Produce 3D reconstructed particles, based on inputs of 3 x 2D images

• Reconstruct the hierarchy of particles resulting from an interaction.

ProtoDUNE-SP Data

Event reconstruction – pattern recognition
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Calorimetry 

dE/dx from ionisation

Neutrino Interactions 
Flavour ID 

Background rejection 
Energy estimation

Energy Estimation 

Muons

EM showers 

Hadronic activity

Particle ID 

PID from dE/dx
Start/End for separation 

(e/γ and μ/K/p)

π0 Mass Reconstruction

Michel Electron Studies

Track Fitting 

Trajectory determination

Momentum from multiple Coulomb 

scattering for exiting tracks
Slide: S. Green

ProtoDUNE-SP Simulation

Event reconstruction – high-level characterisation
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It is a significant challenge to develop automated, algorithmic LArTPC pattern recognition

• Complex, diverse topologies

• Long exposures due to long drift

times (up to a few milliseconds)

• Significant cosmic-ray muon 

background in surface-based 

detectors

w, wire

x, time

50 cm

24.8 GeV ν
μ 

CC DIS

1.8 GeV ν
μ 

CC RES

10 cm

3.3 GeV ν
e 

CC DIS

10 cm

ProtoDUNE-SP

Event reconstruction – focus on pattern 
recognition
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• Single clustering approach is unlikely to work for such complex topologies:
• Mix of track-like and shower-like clusters

• Pandora uses a multi-algorithm approach:
• Build up events gradually

• Each step is incremental - aim not to make mistakes (undoing mistakes is hard…)

• Deploy more sophisticated algorithms as picture of event develops

• Build physics and detector knowledge into algorithms

Pandora multi-algorithm approach
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• Algorithms contain high-level logic and concentrate on the 

important bits

• Physics and pattern recognition ideas

• Pandora software development kit (SDK) supports algorithms
• Functions to access objects

• Make new objects

• Modify existing objects, etc.

Example algorithm structureParticle 

(PFO)

Cluster Vertex

CaloHit MCParticle

Algorithm objects
Created by algs

Input objects
Created by client app

Child objects can be added 
to parent object

MCParticle link

Event Data Model

Pandora multi-algorithm approach
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Pandora

Application Algorithms

larpandora

Producer module, provides 
translation LArSoft⟷Pandora

Hosted via LArSoft GitHub, 

built with mrb

larpandoracontent

100+ algorithms and tools that control the 
patrec

Hosted via LArSoft and PandoraPFA GitHub, 

can build with mrb

pandora (framework, visualization)

Re-usable libraries to support multi-alg approach

Hosted on PandoraPFA GitHub
pre-built as external package by LArSoft

Pandora in LArSoft



2. Running the Reconstruction
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u, wire

x, time

v, wire

x, time

w, wire

x, time Three 2D representations with common 

x coordinate, derived from drift time

CCQE: ν
μ 

+ Ar → p + μ-

Inputs to Pandora
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LArSoft workflows

• In this session we’ll be working from detsim files
• You’ll see a little more detail on workflows in the next exercise

• Your detsim files have gone through μ+p particle gun, G4 propagation and detector 
simulation, but before we run Pandora, we also need to run ”reco1”, which includes 
things like the hit-finding and disambiguation

• Where does Pandora run?
• Pandora typically runs as part of the “reco2” workflow step

• It is followed by various high-level reconstruction steps that use its outputs

• Typically, these steps will produce reco2 output files on which analyzers will run

We will now try running the larpandora module in LArSoft
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• Main goal 1 - Find and get to grips with the DUNE FD1-HD reconstruction FHiCL files
● Find the standard_reco1_dune10kt_1x2x6.fcl and standard_reco2_dune10kt_1x2x6.fcl 

configuration files Look at the different reconstruction steps that we run

● Understand what each of them do

• Main goal 2 - Run the reconstruction

● Run the reconstruction on the files we simulated 

yesterday This includes running Pandora

● Dump out the new output products to confirm we produced what we 
wanted

Goals
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• Later today we’ll be running the event display

• Follow the steps from yesterday to get everything set up. To check, make sure 
MRB_TOP points to where you expect. Let us know if you have any issues here

$ echo $MRB_TOP # This should print the path to your development 
area

Before we get started…
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Understanding the DUNE FD1-HD reconstruction FHiCL files

Main Goal 1
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• The full reconstruction is split into two fcls:

1) standard_reco1_dune10kt_1x2x6.fcl

2) standard_reco2_dune10kt_1x2x6.fcl 
which are run in succession

•reco1 generally corresponds to the ‘lower-level’ reconstruction e.g. hit formation, 
disambiguation etc…

•reco2 generally corresponds to the ‘higher-level’ reconstruction e.g. particle 
creation

• Let’s take a closer look at the fcls to see what these stages in more detail

DUNE FD1-HD reconstruction FHiCL files
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reco1

● Find the trigger_paths: [...] block
○ Can’t find it?
○ This fcl #include “standard_reco1_dune10kt.fcl” so 

let’s check in there.

○ Find standard_reco1_dune10kt.fcl (using the 

same directory as above) and take a look 

inside

• Open standard_reco1_dune10kt_1x2x6.fcl in your favourite text editor

$ vim $DUNESW_DIR/fcl/standard_reco1_dune10kt_1x2x6.fcl 

or

$ code $DUNESW_DIR/fcl/standard_reco1_dune10kt_1x2x6.fcl 

standard_reco1_dune10kt_1x2x6.fcl
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reco1
• Open standard_reco1_dune10kt.fcl in your favourite text editor

$ vim $DUNESW_DIR/fcl/standard_reco1_dune10kt.fcl

standard_reco1_dune10kt.fcl

● Find the trigger_paths: [...] block
○ Still nothing …

○ This line is interesting. We should remember 

this for a little bit later

○ Let’s check the next include
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reco1

● Find the trigger_paths: [...] block
○ Found it!
○ This loads a sequence called reco
○ The previous fcl override this sequence

■ dunefd_horizdrift_workflow_reco1

■ Now we need to check how this sequence 
is defined. Let’s open another include: 
workflow_reco_dune10kt.fcl

• Open standard_reco_dune10kt.fcl in your favourite text editor

$ vim $DUNESW_DIR/fcl/standard_reco_dune10kt.fcl

(snippet of) 
standard_reco_dune10kt.fcl
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• Open workflow_reco_dune10kt.fcl in your favourite text editor

reco1

$ vim $DUNESW_DIR/fcl/workflow_reco_dune10kt.fcl

Random number saver

Waveform (2D) hit reconstruction

Wirecell signal processing 

Now run during detsim

Spacepointsolver

instantaneous 3D positions from 2D hits

Hit disambiguation routine

Uses spacepointsolver 3D positions
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• Now we’ll follow the same procedure for reco2: open 
standard_reco2_dune10kt_1x2x6.fcl$ less 

$DUNESW_DIR/fcl/standard_reco2_dune10kt_1x2x6.fcl
$ less $DUNESW_DIR/fcl/standard_reco2_dune10kt.fcl
$ less $DUNESW_DIR/fcl/standard_reco_dune10kt.fcl
$ less $DUNESW_DIR/fcl/workflow_reco_dune10kt.fcl• Find the physics.reco path in 

standard_reco2_dune10kt.fcl•
•

Q: which producers are we going to run?

A: It’s the ones in the dunefd_horizdrift_workflow_reco2 path

• The sequence contents are found higher up in the fcl file

First time using less? Use the ↑ /

↓ arrow keys to navigate the file, 

and press q to quit

includes

• Next is a single-slide 
overview of all the reco 
steps - not nearly enough 
to do them justice - but 
today we will mainly be 
focusing on pandora

dunefd_horizdrift_workflow_reco2: [
@sequence::dunefd_horizdrift_2dclustering, 
@sequence::dunefd_horizdrift_pandora, 
@sequence::dunefd_horizdrift_pmtrack, 
@sequence::dunefd_horizdrift_pmtrack_…, 
@sequence::dunefd_horizdrift_pmtrack_…, 
@sequence::dunefd_horizdrift_pmtrack_…, 
@sequence::dunefd_horizdrift_cvn, 
@sequence::dunefd_horizdrift_nuenergy, 
@sequence::dunefd_horizdrift_pd_reco1, 
@sequence::dunefd_horizdrift_pd_reco2,
rns

]

dunefd_horizdrift_pandora: 
[ pandora,
pandoraTrack, 
pandoraShowe, 
pandoracalo, 
pandorapid ]

reco2
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“Random number saver” 

saves the state of art’s 

random number generator

These modules process the 

wire signals (e.g. to 

remove noise), and then 

find peaks to make hits

DUNE far detector reconstruction chain 

on one slide

rns wclsmcnfsp, gaushit, …
Runs a clustering 

algorithm on the hits, used 

later by PMA

linecluster, 
…

Runs Pandora’s pattern recognition itself.

Produces reconstructed particles from the 

input hits which are used by downstream 

modules and eventual physics analyses

Confusingly, some other modules contain the 

word “pandora” but this just refers to the 

fact that their inputs come from Pandora

pandora

PMA (Projection Matching 

Algorithm) is an alternative 

method to Pandora for 

reconstructing tracks

pm*, 
…

Alternative (unmaintained) 

shower reconstruction

emshower, blurredcluster, 
… Simple track and shower fitting modules using 

particles created by Pandora particle as input

pandoraTrack, pandoraShower

Reconstructs calorimetric information (dE/dx) 

from Pandora tracks, and runs particle 

identification (PID) to distinguish between 

reconstructed particle types

pandoracalo, pandorapid

• reco1: low level reconstruction, 
up to hit finding

• reco2: high level 
reconstruction including 
clustering, 3D reconstruction, 
calorimetry, PID

Neutrino energy 

reconstruction

nuenergy*

Convolution visual 

network: DL-based flavour 

tagging

cvn
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• There’s a lot happening in the reconstruction stage

• To demonstrate how these modules accumulate a reconstruction output, let’s focus on 
the Pandora ‘workflow’ i.e. ignoring the optical reconstruction

Signal 
processing

Hit finding
Pattern 

recognition

Particle fits: 
Tracks, 

Showers

Calorimetric 
reconstruction

Particle 
identification

wclsmcnfs
p 
(wirecell
)

gaushit 
spsolve+hith
d

pandor
a

pandoraTrack 
pandoraShowe
r

pandoraCal
o

pandoraPi
d

A cumulative reconstruction output

Historically, modules using Pandora outputs 

frequently have Pandora in the name.

Most of these modules aren’t part of Pandora 

and aren’t maintained by the Pandora 

development team.

• Each experiment has its own unique needs, so expect 
to see some differences in the reconstruction chain if you 
work on MicroBooNE, ProtoDUNE, DUNE, etc.

• Similarly, Pandora is configured differently for different 
experiments, and different use cases (e.g. atmospheric vs 
beam neutrino interactions)

• Next, let’s see how Pandora is configured for DUNE FD1-HD

d
et

si
m

an
al

ys
is
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• Practically all LArSoft modules have a configuration defined by parameters e.g. say that we had a producer module that added a 

number to our root file – it would likely have a parameter which defines the number that is added, and that parameter is set in our 

fcl files

fcl files often #include many other fcl files, and it can be unclear where our parameters are set 

fhicl-dump answers this question, and follows all #includes to get the bottom-line configuration

•

•

• We can pipe (|) its output to less and search for a producer to learn more:

Pandora’s 
configuration

$ fhicl-dump standard_reco2_dune10kt_1x2x6.fcl | less -p "pandora:"

Less’s –p option allows us to jump straight 
to the part of the file that we are interested

in. In less, use the  /  keys to move up and 
down, and ‘q’ to exist.

{
ConfigFile: "PandoraSettings_Master_DUNEFD.xml"
EnableLineGaps: true
EnableMCParticles: true
EnableProduction: true
GeantModuleLabel: "largeant"
HitFinderModuleLabel: "hitfd"
PrintOverallRecoStatus: false
ShouldPerformSliceId: false
ShouldRunAllHitsCosmicReco: false
ShouldRunCosmicHitRemoval: false
ShouldRunCosmicRecoOption: false
ShouldRunNeutrinoRecoOption: true
ShouldRunSlicing: false
ShouldRunStitching: false
SimChannelModuleLabel: "tpcrawdecoder:simpleSC"
UseGlobalCoordinates: true
UseHitWidths: true
module_type: "StandardPandora"}

The settings file that contains the list of algorithms that 
Pandora will run

The producer module that created the hits that we are 
going to feed into Pandora

The steering parameters that tell Pandora which of 
its high-level reconstruction steps it should execute

The type of the LArSoft module to use
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ShouldRunAllHitsCosmicRec
o
ShouldRunStitchin
g
ShouldRunCosmicHitRemova
l
ShouldRunSlicin
g
ShouldRunCosmicRecoOptio
n
ShouldRunNeutrinoRecoOptio
n
ShouldPerformSliceI
d

Pandora Config

• Firstly, what steering parameters do we have and what do they mean?

should we initially run a fast and simplified version of the reconstruction?
and do we need to ‘stitch’ this reconstruction output between 
different detector chambers?

should we try to remove ‘obvious’ cosmic rays from this output e.g. tracks 
that both enter and leave the detector?

do we expect multiple cosmic rays? or multiple neutrinos? or both? And 
therefore, do we need to group (or slice) the input hits such that each 
individual interaction exists within it’s own slice?

do we expect cosmic-rays? and so should we run the cosmic algorithm 
chain over these slices?

do we expect neutrinos? and so should we run the neutrino algorithm 
chain over these slices?

do we need to determine whether a slice contains a cosmic ray or neutrino interaction?

(For reference)
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Running the reconstruction

Main Goal 2
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$ mkdir -p 
$MRB_TOP/reco/work
$ cd $MRB_TOP/reco/work$ lar -c standard_reco1_dune10kt_1x2x6.fcl -n -1 -s /path/to/my/detsim/file.root -o 
reco1_events.root
$ lar -c standard_reco2_dune10kt_1x2x6.fcl -n -1 -s reco1_events.root -o reco2_events.root

Can also run on pre-made gen+g4+detsim files in:
/home/leonardo/arqsEBN/prod_1mu1p_novar_10evts_g4_detsim.root

The -n -1 option means run over all 
events in the input file

Running the reconstruction
• We are now poised to run the reconstruction! Make a directory to work in, and run it:

We can check to see 
that everything we 
expected has been 
executed, and see 

how long each took

=================================================================================================================================
TimeTracker printout (sec) Min Avg Max Median RMS nEvts
=================================================================================================================================
Full event 14.4235 16.7021 22.9312 15.3978 3.17841 5

source:RootInput(read) 0.000452972 0.000635409 0.000780154 0.000701023 0.000128122 5
reco:linecluster:LineCluster 0.0167877 0.0195162 0.0252377 0.0173858 0.00333468 5
reco:trajcluster:TrajCluster 0.0550071 0.0701446 0.0917665 0.0652082 0.0124367 5
reco:pandora:StandardPandora 0.748147 1.25079 2.75524 0.862925 0.760793 5
reco:pandoraTrack:LArPandoraTrackCreation 0.00308148 0.00406956 0.00777318 0.00316728 0.00185255 5
reco:pandoraShower:LArPandoraModularShowerCreation 0.0162824 0.0203825 0.0253648 0.0192886 0.00303779 5
reco:pandoracalo:Calorimetry 0.00431279 0.00504067 0.00715086 0.00455915 0.00106172 5
reco:pandorapid:Chi2ParticleID 9.6464e-05 0.000435184 0.00172821 0.000110911 0.000646606 5
reco:trkshowersplit:TrackShowerHits 0.00274607 0.00313384 0.0042873 0.00287603 0.000582228 5
reco:pmtrack:PMAlgTrackMaker 0.54331 1.18013 2.20622 1.2577 0.603529 5
reco:pmtrackcalo:Calorimetry 0.000723637 0.00180062 0.00485471 0.00117207 0.00155474 5
…
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$ lar -c eventdump.fcl -s reco2_events.root -n 
1

So… what’s new?

PROCESS NAME | MODULE LABEL............ | PRODUCT INSTANCE NAME................... | DATA PRODUCT TYPE................................ | .SIZE
..
G4.......... | largeant.......... | ...................................... | sim::ParticleAncestryMap................................. | .....-
G4.......... | largeant.......... | LArG4DetectorServicevolTPCPlaneUOuter. | std::vector<sim::SimEnergyDeposit>....................... | .....0

G4.......... | largeant.......... | LArG4DetectorServicevolTPCActiveOuter. | std::vector<sim::SimEnergyDeposit>....................... | .....0 
detsim...... | opdigi............ | ...................................... | std::vector<sim::OpDetDivRec>............................ | ...383
detsim...... | tpcrawdecoder..... | simpleSC.............................. | std::vector<sim::SimChannel>............................. | 384000
detsim...... | tpcrawdecoder..... | wiener................................ | std::vector<recob::Wire>................................. | 384000
detsim...... | rns............... | ...................................... | std::vector<art::RNGsnapshot>............................ | .....1...
Reco1....... | spsolve........... | ...................................... | std::vector<recob::SpacePoint>........................... | ...159
Reco1....... | hitfd............. | ...................................... | std::vector<recob::Hit>.................................. | ...298
Reco1....... | spsolve........... | ...................................... | std::vector<recob::PointCharge>.......................... | ...159
Reco1....... | TriggerResults.... | ...................................... | art::TriggerResults...................................... | .....1...
Reco2....... | pandoraShower..... | ...................................... | art::Assns<recob::Shower,recob::PCAxis,void>............. | .....3
Reco2....... | pandoraShower..... | ...................................... | art::Assns<recob::Shower,recob::SpacePoint,void>......... | ...252
Reco2....... | pandora........... | ...................................... | art::Assns<recob::Slice,recob::Hit,void>................. | ...298
Reco2....... | pandora........... | ...................................... | std::vector<recob::PFParticle>........................... | .....4...

… and in 
reco2

these are the 
existing data 

products from 
the previous 

steps
these are the new 

data products
that we produced 

in reco1

You’ll see a much longer list! 
I’ve cut out a lot output so that 

it all fits on the slide

• Run eventdump.fcl on the .root file to see the new collections we’ve just made
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$ lar -c eventdump.fcl -s reco2_events.root -n 
1

So… what’s new?

PROCESS NAME | MODULE LABEL............ | PRODUCT INSTANCE NAME................... | DATA PRODUCT TYPE................................ | .SIZE
..
G4.......... | largeant.......... | ...................................... | sim::ParticleAncestryMap................................. | .....-
G4.......... | largeant.......... | LArG4DetectorServicevolTPCPlaneUOuter. | std::vector<sim::SimEnergyDeposit>....................... | .....0

G4.......... | largeant.......... | LArG4DetectorServicevolTPCActiveOuter. | std::vector<sim::SimEnergyDeposit>....................... | .....0 
detsim...... | opdigi............ | ...................................... | std::vector<sim::OpDetDivRec>............................ | ...383
detsim...... | tpcrawdecoder..... | simpleSC.............................. | std::vector<sim::SimChannel>............................. | 384000
detsim...... | tpcrawdecoder..... | wiener................................ | std::vector<recob::Wire>................................. | 384000
detsim...... | rns............... | ...................................... | std::vector<art::RNGsnapshot>............................ | .....1...
Reco1....... | spsolve........... | ...................................... | std::vector<recob::SpacePoint>........................... | ...159
Reco1....... | hitfd............. | ...................................... | std::vector<recob::Hit>.................................. | ...298
Reco1....... | spsolve........... | ...................................... | std::vector<recob::PointCharge>.......................... | ...159
Reco1....... | TriggerResults.... | ...................................... | art::TriggerResults...................................... | .....1...
Reco2....... | pandoraShower..... | ...................................... | art::Assns<recob::Shower,recob::PCAxis,void>............. | .....3
Reco2....... | pandoraShower..... | ...................................... | art::Assns<recob::Shower,recob::SpacePoint,void>......... | ...252
Reco2....... | pandora........... | ...................................... | art::Assns<recob::Slice,recob::Hit,void>................. | ...298
Reco2....... | pandora........... | ...................................... | std::vector<recob::PFParticle>........................... | .....4...

… and in 
reco2

these are the 
existing data 

products from 
the previous 

steps
these are the new 

data products
that we produced 

in reco1

You’ll see a much longer list! 
I’ve cut out a lot output so that 

it all fits on the slide

• Run eventdump.fcl on the .root file to see the new collections we’ve just made

You’re now able to coffee 
break !!!!!

Reconstructed 
Events
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Additional information
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Configuring Pandora steps
● Pandora’s full reconstruction chain is designed to handle neutrino interactions in dense cosmic environments. 

As you will hear later, there are two main algorithm chains optimised for cosmic rays, and neutrinos respectively

● For DUNE-FD - we normally want to run the cosmic and neutrino reconstruction completely independently

● For cosmic events, we only need to run the cosmic algorithm chain. For neutrino events, we only need to run 

the neutrino algorithm chain. We can configure Pandora to run one, many or all of the steps in its full 

reconstruction chain by modifying the FHiCL steering parameters

● Make a new directory to work in for this session, and add a new FHiCL file with the following lines, then save 
and close the file:

$ mkdir -p $MRB_TOP/reco/config
$ cd $MRB_TOP/reco/config # Put your new .fcl file here
$ vim my_reco.fcl

Please use your favourite text 
editor, here we use vim. If you 
accidentally opened vim and want

to close it type Esc, :qa, Return ↵

#include “standard_reco2_dune10kt_1x2x6.fcl"

physics.producers.pandora.ShouldRunAllHitsCosmicReco: false 
physics.producers.pandora.ShouldRunStitching: false 
physics.producers.pandora.ShouldRunCosmicHitRemoval: false 
physics.producers.pandora.ShouldRunSlicing: false 
physics.producers.pandora.ShouldRunCosmicRecoOption: false 
physics.producers.pandora.ShouldRunNeutrinoRecoOption: true 
physics.producers.pandora.ShouldPerformSliceId: false

Include the standard configuration

Example:
Only run the neutrino algorithm chain

(For reference)
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Pointing to a new configuration

• We want to make sure that LArSoft will know where to look for our new FHiCL file, to do this we add it to the 

FHICL_FILE_PATH environment variable. Start by printing it to the terminal:

$ echo 
$FHICL_FILE_PATH

• You will see many, many directories, all separated by a ‘:’. To add our reco/config folder to this list run the following 

command:

$ export 
FHICL_FILE_PATH=$MRB_TOP/reco/config:$FHICL_FILE_PATH

•

•

Echo the FHICL_FILE_PATH again to check that everything worked (it should be the first in the list) 

Now run fhicl-dump again to make sure our new configuration file is set up as we want

$ fhicl-dump my_reco.fcl | less -p 
"pandora:"

(For reference)



3. Pandora’s Algorithms
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Inputs to Pandora

p
𝝁-

e
-

p

𝝁-

e
-

e
-

p
𝝁-

p

𝝁-

e
-

𝞶𝝁 𝞶e

3D truth information

u, wire

x, time

v, wire

x, time

w, wire

x, time Three 2D representations with common 

x coordinate, derived from drift time

CCQE: ν
μ 

+ Ar → p + μ-
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• We use a multi-algorithm approach to create two algorithm chains:

• Consolidated reconstruction uses these chains to guide reconstruction for all use cases:

• Cosmic rays , Multiple drift volumes     , Arbitrary wire angles  , 2 or 3 wire planes

★

Consolidated reconstruction

Also includes delta ray 

reconstructionTarget reconstruction of 
particles emerging from 

an identified vertex ★

Neutrino (or 

TestBeam)

Cosmic-Ray 

Muons

Target reconstruction of straight-line 

particles in detector (e.g. cosmic-ray muons)
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Consolidated reconstruction

Pandora 

Neutrino

Pandora 

Cosmic
Input hits

Clear CRs

CR-Removed Hits

Candidate Neutrino 

Particle(s)

Remaining CRs

Consolidated 

event output

Pandora 

Cosmic

Tag Clear 

CRs

3D “Slicing”

Algorithm

Neutrino 

Particle ID
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Consolidated reconstruction - Algorithm chains

• Two Pandora algorithm chains created for LArTPC use, with many algs in common:

• PandoraCosmic: strongly track-oriented; showers assumed to be delta rays*, added as daughters of primary 
muons; muon vertices at track high-y coordinate.

• PandoraNu: finds neutrino interaction vertex and protects all particles emerging from vertex position. Careful 

treatment to address track/shower tensions.

Initially use a two-pass approach: Input to 
PandoraNu excludes hits from unambiguous 
cosmic rays.

*delta rays: secondary electrons ejected from 
atoms due to interactions with other charged 
particles.
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PandoraCosmic → PandoraNu

Unambiguous 

cosmic-ray muons

Other particles, input 

to PandoraNu

Other particles, input to PandoraNu

Unambiguous cosmic-ray muons



What do we want from reconstruction?

● Purity: representing energy deposits from exactly one true particle.
● Completeness: fraction of the total hits associated with the true particle.

  And good vertex identification, but this we are going to see later!

Eur. Phys. J. C (2018) 78:82
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Cosmic-Ray Muon Reconstruction - 2D
• For each plane, produce list of 2D clusters that represent continuous, unambiguous lines of 

hits:

• PandoraCosmic: strongly track-oriented; showers assumed to be delta rays, added as daughters of primary 
muons; muon vertices at track high-y coordinate.

• Clusters refined by series of cluster-merging and cluster-splitting algs that use topological info.

Example: Crossing 

cosmic-ray muons
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Topological Association - 2D

• Cluster-merging algorithms identify associations between multiple 2D clusters and look to grow 

the clusters to improve completeness, without compromising purity.

• The challenge for the algorithms is to make cluster-merging decisions in the context of the entire event, rather than 
just considering individual pairs of clusters in isolation.

• Typically need to provide a definition of association (for a given pair of clusters), then navigate forwards and 

backwards to identify chains of associated clusters that can be safely merged.

w [cm]

x [cm]

u [cm]

x [cm]

Cluster 

merging

miss target

Sampling pointson/near target 

miss target

in detector gap

inner cluster

outer cluster

Check associations 

both ways

LongitudinalAssociation CrossGapsAssociation
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Track Pattern Recognition - 3D
• Our original input was 3x2D images of charged particles in the detector.

• Should now have reconstructed three separate 2D clusters for each particle:
• Compare 2D clusters from u, v, w planes to find the clusters representing same particle.

• Exploit common drift-time coordinate and our understanding of wire plane geometry.

• At given x, compare predictions {u,v→w; v,w→u; w,u→v} with cluster positions, calculating 𝜒2

x, common drift-time coordinate

If clusters are from 
same particle, expect 

w hits to match 
predictions u,v→w

Candidate 2D 

Clusters

Close agreement: predictions 

sit right upon real hits here

Sample Cluster 
consistency across 

common x-overlap region

Store all results in a “tensor”, recording x-overlap span, no. of sampling points, no. of “matched” sampling
points and 𝜒2. Documents all 2D cluster-matching ambiguities.

w        
u,v→w

v 
u

v 
u
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Track Pattern Recognition - 3D
Tensor stores overlap details for trios of 2D clusters. Tools make 2D reco changes to resolve any 

ambiguities. If a tool makes a change (e.g. splits a cluster), all tools run again.

ClearTracksTool LongTracksTool

No. of 
associated 2D 
Clusters u:v: w

Find unambiguous elements in 
the tensor, demanding that the 
common x-overlap is 90% of the 
x-span for all three clusters.

Resolve obvious ambiguities: clusters 
are matched in multiple configurations, 
but one tensor element is much
“better” than others.
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Track Pattern Recognition - 3D

Two clusters in w 
and v, matched to 
common u cluster. 

Split u cluster.

Two clusters in v view, 
matched to common 

clusters in u and w 
views. Merge v clusters.

OvershootTracksTool UndershootTracksTool

• Use all connected clusters to assess whether this is a true 3D kink topology.

• Modify 2D clusters as appropriate (i.e. merge or split) and update cluster-matching tensor.

• Initial ClearTracks tool then able to identify unambiguous groupings of clusters and form particles.
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Stitching and T
0 

Identification

Stitch together any cosmic rays 

crossing between volumes, identifying T0

Electron drift
direction

Electron drift
direction

A
P

A C
PA

A
P

A

• In a LArTPC image, one coordinate derived from drift times of ionisation electrons:

• But, only know electron arrival times, not actual drift times: need to know start time, T 
0

• For beam particles, can use time of beam spill to set T
0
, but unknown for cosmic rays

• Place all hits assuming T
0 

= T
Beam

, but can identify T
0 

for any cosmic rays crossing volumes

T
0 

= T
Beam

Corrected T
0

Δ
T

Δ
T

3D view
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Delta-Ray Reconstruction - 2D, 3D

Child delta ray 

(shower) particles

• Assume any 2D clusters not in a track particle are from delta-ray showers:
• Simple proximity-based re-clustering of hits, then topological association algs.

• Delta-ray clusters matched between views, creating delta-ray shower particles.

• Parent muon particles identified, and delta-ray particles added as children.

Parent muon 

(track) particle
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3D Hit/Cluster Reconstruction

• For each 2D Hit, sample clusters in other views at same x, to provide u
in

, v
in 

and w
in 

values

• Provided u
in

, v
in 

and w
in 

values don’t necessarily correspond to a specific point in 3D space

• Analytic expression to find 3D space point that is most consistent with given u
in

, v
in 

and w
in

• 𝜒2 = (u
out 

- u
in

)2 / 𝜎 2 + (v
out 

- v
in

)2 / 𝜎 2 + (w
out 

- w
in

)2 / 𝜎 2

• Write in terms of unknown y and z, differentiate wrt y, z and solve

• Can iterate, using fit to current 3D hits (extra terms in𝜒2) to produce smooth trajectory

Final 3D 

output

First pass 

3D hits
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Cosmic Ray Tagging and Slicing
Identify clear cosmic rays (red) and hits to 

reexamine under test beam hypothesis (blue)

• Clear cosmic rays:

• Particles appear to be “outside” of detector if T
0 

= T
Beam

• Particles stitched between volumes using a T
0 
≠ T

Beam

• Particles pass through the detector: “through going”

• Slice/divide blue hits from separate 

interactions

• Reconstruct each slice as test beam 

particle or neutrino candidate

• Then choose between cosmic ray or test 

beam outcome for each slice
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Consolidated reconstruction

Pandora 

Neutrino

Pandora 

Cosmic
Input hits

Clear CRs

CR-Removed Hits

Candidate Neutrino 

Particle(s)

Remaining CRs

Consolidated 

event output

Pandora 

Cosmic

Tag Clear 

CRs

3D “Slicing”

Algorithm

Neutrino 

Particle ID

We arrived here!!!

Neutrino Candidate!
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Neutrino Reconstruction

• Must be able to deal with presence of any cosmic-ray muon remnants.
• Run fast version of reconstruction, up to 3D hit creation

• “Slice” 3D hits into separate interactions, processing each slice in isolation.

• Each slice ⇒ candidate neutrino particle.

• Neutrino pass reuses track-oriented clustering and topological

association.

• Topological association algs must handle rather more complex topologies.

• Specific effort to reconstruct neutrino interaction vertex.

• More sophisticated efforts to reconstruct showers.

w [cm]

x [cm]

Neutrino event, 
amongst cosmic- 

ray remnants
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Vertexing reconstruction – U-Net version

In training hits are assigned 
a class according to distance 

from true vertex

Network trained to learn 
those distances from input 

images

Network infers hit distances 
and resultant heat map 

isolates candidate vertex
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Shower Reconstruction - 2D
• Track reconstruction exactly as in PandoraCosmic, but now also attempt to reconstruct

primary electromagnetic showers, from electrons and photons:

• Characterise 2D clusters as track-like or shower-like and use topological properties to identify clusters that 
might represent shower spines.

• Add shower-like branch clusters to shower-like spine clusters. Recursively identify branches on the top -

level spine candidate, then branches on branches, etc.
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Shower Reconstruction - 3D

• Reuse ideas from track reco to match 2D

shower clusters between views:

• Build a tensor to store cluster overlap and 
relationship information.

• Overlap information collected by fitting shower

envelope to each 2D cluster.

• Shower edges from two clusters used to predict envelope 

for third cluster.
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Particle Refinement - 2D, 3D

• Series of algs deal with remnants to improve particle completeness (esp. sparse showers):
• Pick up small, unassociated clusters bounded by the 2D envelopes of shower-like particles.

• Use sliding linear fits to 3D shower clusters to define cones for merging small downstream shower particles or 
picking up additional unassociated clusters.

• If anything left at end, dissolve clusters and assign hits to nearest shower particles in range.

Fragments to 

collect

3D Shower 

Cluster

Cone 1 Cone 2 Cone 3 Cone 4
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Particle Hierarchy Reconstruction - 3D

Parent Track

Daughter Tracks and Showers

T=π+

S S

T

T

T

T
S

Simulated 𝜈𝜇 Pandora 

Reconstruction at MicroBooNE

Simulated 𝜋+ Pandora 

Reconstruction at ProtoDUNE-SP

• Use 3D clusters to organize particles into a hierarchy, working outwards from interaction vtx
• Use the hierarchy to access particles in analyzers

S

S

EPJC (2018) 78:82
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Consolidated output

E.g. Reconstruction output: test beam particle (electron) 

and: N reconstructed cosmic-ray muon hierarchies

E.g. Test beam particle: charged pion

Child tracks and showers

Parent track
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Reconstruction Output

Just the most important 

outputs shown herePFParticle

3D Vertex 3D Track/Shower2D Clusters 3D SpacePoints

2D Hits

    Parent PFParticle       Child PFParticle

• Must translate output from Pandora Event Data Model to LArSoft Event Data Model. The

key output is the PFParticle (PF ⇒ Particle Flow):

• Each PFParticle corresponds to a distinct track or shower and is associated to 2D clusters.

• 2D clusters group hits from each readout plane, and are associated to the input 2D hits.

• PFParticles also associated to 3D spacepoints and a 3D vertex.

• PFParticles placed in a hierarchy, with identified parent-daughter relationships.

• PFParticles flagged as track-like or shower-like (both outcomes are persisted).
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Overall summary

• The use of Liquid Argon technology is one of the cornerstones of the current and future

neutrino programmes.

• High-performance reconstruction techniques are required in order to fully exploit the

imaging capabilities offered by LArTPCs:

• Pandora multi-algorithm approach uses large numbers of decoupled algorithms to gradually build up a 

picture of events.

• Output is a carefully-arranged hierarchy of reconstructed particles, each corresponding to a distinct

track or shower.



4. Studying/Debugging 
the Reconstruction 
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• The events you’ve looked at so far have been relatively simple

• Two track-like trajectories emerging from a common vertex

• Nonetheless, you may have seen some surprising reconstruction results, e.g.:

• Most neutrino interactions will be more complex than this:
• Track-like and shower-like topologies

• Re-interactions

• High particle multiplicity

You will come across mis-reconstructed events!

Reconstruction is hard

Split tracks

Merged tracks

Holes in tracks

Incorrect vertex

Wavy tracks

Reconstruction Me 
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• The events you’ve looked at so far have been relatively simple

• Two track-like trajectories emerging from a common vertex

• Nonetheless, you may have seen some surprising reconstruction results, e.g.:

• Most neutrino interactions will be more complex than this:
• Track-like and shower-like topologies

• Re-interactions

• High particle multiplicity

You will come across mis-reconstructed events!

Reconstruction is hard

Split tracks

Merged tracks

Holes in tracks

Incorrect vertex

Wavy tracks
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• Any given reconstruction failure can depend on a wide variety of minute details of the event

under consideration

• However, a number of circumstances exist that more reliably cause problems

• We’ll give some examples in the next few slides!

• Combinations of these issues can lead to some bizarre reconstruction errors that make no 

sense unless you walk through the sequence of (often small) mistakes that produced the 

final outcome

What can go wrong?
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• Neutrino interactions happen in 3D, but we have (typically) three, 2D projections of the 

interaction

• Trajectories that are clearly distinct in 3D can appear indistinguishable in a 2D projection

• If the trajectories can be distinguished in two of the projections, it is still possible to 

effectively reconstruct the 3D trajectories

• If overlap occurs in multiple views however, you’ll likely lose a particle

Overlapping and back-to-back trajectories (1)

colinear region – tracks merge

tracks separate – new PFOs
Example:
Tracks merged due to collinearity
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• Neutrino interactions happen in 3D, but we have (typically) three, 2D projections of the 

interaction

• Trajectories that are clearly distinct in 3D can appear indistinguishable in a 2D projection

• If the trajectories can be distinguished in two of the projections, it is still possible to 

effectively reconstruct the 3D trajectories

Overlapping and back-to-back trajectories (2)

vertex here – no context to 

help, tracks mergedExample:
If one particle has a direction exactly 
opposite another, it’s very likely the 
resultant straight-line will be 
reconstructed as a single particle
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• For showers, in particular, a small opening angle between two showers can make it 

challenging to determine to which shower the hits belong

• This can result in an incorrect distribution of hits among the showers, or to a complete 

merging of the two showers

• This is a common failure mode

Small opening angles and sparse showers (1)

Merged π0 γs
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• The opposite of this problem is shower fragmentation

• If there are large gaps between the hits belonging to a given shower, it can be difficult to 

merge them together and so showers can be broken into multiple reconstructed particles

Small opening angles and sparse showers (2)

Single true shower
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Awkward trajectories (1)

• Pandora runs on discrete hits that it receives from 

signal processing steps that run before it

• However those hits are extracted from continuous 
waveforms produced by the drift electrons as they 
pass by induction planes and get deposited on the 
collection plane

• If a particle trajectory is perpendicular to the wire planes, its drift electrons interact with a

single wire/strip, from which it is challenging to extract hits

• The result is a small number of wide hits (i.e. a high uncertainty in the position along the drift direction)

• Such hits can be difficult to cluster
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Awkward trajectories (2)

• This can also occur if the component parallel to the planes aligns with a wire/strip (though 

this will only affect one view)

• The final awkward trajectory is what we call the isochronous case, where each (most) points 

along a particle trajectory have a common x coordinate

• This is not a problem for reconstruction within a single view, but matching clusters between views uses the 

common x coordinate as a means to relate the clusters and so having all of the hits sharing a common x 

coordinate can be very unhelpful
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• Different algorithms target different topologies and so use different criteria for decision 

making, which sometimes will be inappropriate

• If you see a reconstruction problem in your fully reconstructed event, it can be very useful to 

intercept the reconstruction at intermediate points to understand where things started to go 

wrong

• You can do this using the techniques from the previous exercise

1) Add visualization algorithms at various points in the XML configuration

2) Look to see if the clusters/PFOs at each point appear well reconstructed

3) Make a judgment – for example, highly fragmented trajectories are often fine if the

algorithm that targets these fragments hasn’t run yet

Identifying a misbehaving algorithm (1)
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• If you find an algorithm that broke your event, you have two broad choices:

• It’s not realistic to expect you to develop new algorithms today

• We’ve created a very simplistic reconstruction workflow that introduces failures that we want

you to try to fix

• You can introduce existing algorithms

• You can tune algorithms, but keep in mind, if you tune things too much for one event, you’ll break

others

Identifying a misbehaving algorithm (2)

1. Tune the algorithm

to modify its decision making 
to avoid the mistake

2. Develop a new algorithm

specifically designed to fix the
kind of mistake you’ve found
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• Main goal – Identify the source of reconstruction failures
• Add visualizations at key points of the reconstruction chain to understand how the reconstruction 

proceeds

• Investigate the behaviour of relevant algorithms to understand how they work

• Secondary goal – Fix events
• Identify algorithms that might address the issues and add those algorithms into the chain

• Attempt to tune key parameters in XML, as needed

• Continue to use intermediate visualization to understand what your changes have done

• Please don’t worry if you don’t fix the issues
• Even if you fix an error in one place, your efforts might be undone later in the reconstruction chain

• The reconstruction algorithms interact with each other

• You may be able to fix parts of an event, but not others

• Reconstruction is hard

Goals
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Investigate the baseline reconstruction output
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A new event

• We’ll be using custom neutrino events for this task, rather than the 1 muon, 1 proton events 

you’ve been looking at so far:

cp /home/leonardo/arqsEBN/ reco1_neutrino.root $MRB_TOP/reco/work

• Make sure to be in the directory you’ve been working in so far for the reconstruction tutorials 

and then copy the configuration files we’ll be using for this session:

$ cd $MRB_TOP/reco/config

$ cp /home/leonardo/arqsEBN/ PandoraSettings_Master_Simple.xml .

$ cp /home/leonardo/arqsEBN/ PandoraSettings_Neutrino_Simple.xml .

• These files contain a greatly simplified reconstruction workflow, where many Pandora algorithms have 
been removed, to introduce reconstruction failures to these events
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An aside on enabling the Pandora event display

• In this session we’ll be using a custom configuration, but the typical top-level Pandora 

configuration file will be called something like PandoraSettings_Master_DUNEFD.xml

• If all you want to do is enable the Pandora event display in an otherwise standard configuration 

you can copy this file locally and enable Pandora Monitoring with the following modification:

<pandora>
<!-- GLOBAL SETTINGS -->
<IsMonitoringEnabled>true</IsMonitoringEnabled>
...
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Ensuring your custom files are found

• At the moment, Pandora won’t know about our custom configuration files, so we need to add our 

config directory to the FW_SEARCH_PATH so Pandora knows where to look for it (you might 

already have this in a setup script) and do the same for the FHICL_FILE_PATH:

$ export FW_SEARCH_PATH=$MRB_TOP/reco/config:$FW_SEARCH_PATH

$ export FHICL_FILE_PATH=$MRB_TOP/reco/config:$FHICL_FILE_PATH

• Now we need to set up a new FHiCL file to run our custom configuration…
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• Run Pandora over the event and look at the reconstruction output

#include "standard_reco2_dune10kt_1x2x6.fcl"

physics.producers.pandora.EnableMCParticles:  true 
physics.producers.pandora.ConfigFile: "PandoraSettings_Master_Simple.xml" 
physics.reco: [ @sequence::dunefd_horizdrift_2dclustering,

pandora ] 
physics.end_paths: []

Start from the standard reco chain

Point to our new XML settings file 
This is a very convenient way to 
customize FHiCL – inherit and 
minimally modify

Writing a FHiCL file to run custom reconstruction

$ lar –c reco_driver.fcl –s reco1_neutrino.root –n 1

• Let’s make a new FHiCL file that just runs the reconstruction using our custom XML configuration 

and produces an output file without the default timestamp tag

$ vim reco_driver.fcl

• Add the lines below to reco_driver.fcl, save and close:

When copy-pasting commands there can be strange character conversions, particularly for hyphens, these often 

show up as an inability to find a config file. Try deleting the hyphens and just typing them

Only run up to Pandora pat rec
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A brief introduction to the Pandora event display
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Understanding the Pandora event display

Every time the visual 
monitoring algorithm runs, 
we get a new event display 
(enumerated from zero) Wheel up - zoom out

Wheel down - zoom in Wheel 

press + drag - pan viewport

(Or whatever the mapping of these 
operations is for your laptop. Arrow 
keys can move the view around as 
well)

In Viewer 1, all 
information we 
visualize is
overlaid. Here we 
see hits from all 
three views on top 
of each other

+ the detector 

geometry

z

x

Try checking and 
unchecking the boxes to 
turn on and off the hits 
from each of the views
❒ CaloHitListU

❒ CaloHitListV

❒ CaloHitListW

The 2D hit coordinates are 

stored in Pandora as 3D 

coordinates (X, Y, Z)

X = drift time coordinate

Y = 0

Z = wire number coordinate

You can safely ignore these options from TEve we won’t use them here

Feel free to shrink down these menus for more space

W - wireframe mode
R - return from wireframe mode

If you click in the terminal 
window and press Return ↵ 
Pandora will continue 
running
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An example event
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• We’ll highlight a couple of events that are available to 
investigate in this session, but we’ll focus on one to 
outline the process

• Depicted to the right is the MC truth for this CC ν
μ 

interaction in the U view (V and W on the next two 

slides)

• The primary particles in this event are

• Muon

• Charged pion – from Σ+ → n π+

• Four photons – from two π0 → γ γ

The underlying event (1)
U

μ

π

γ

γ

γ γ
p

e
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The underlying event (2)

• We’ll highlight a couple of events that are available to 
investigate in this session, but we’ll focus on one to 
outline the process

• Depicted to the right is the MC truth for this CC ν
μ

interaction in the V view

• The primary particles in this event are
• Muon

• Charged pion – from Σ+ → n π+

• Four photons – from two π0 → γ γ

V

μ

π
γ

γ

γ γ
p

e
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The underlying event (3)

• We’ll highlight a couple of events that are available to 
investigate in this session, but we’ll focus on one to 
outline the process

• Depicted to the right is the MC truth for this CC ν
μ

interaction in the W view

• The primary particles in this event are
• Muon

• Charged pion – from Σ+ → n π+

• Four photons – from two π0 → γ γ

W

μ

π
γ

γ

γ γ

p

e
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Reconstructing the event (1)
U• If we run our simplified reconstruction and consider the 

clusters in the U view, a few things are evident:
• The pion is well-reconstructed, but also merged with its child 

proton

• The muon is split into two clusters as a result of the nearby 

photon activity (the end of the first cluster actually follows the 

connected hits from the photon)

• The shower reconstruction is much less successful

• There is notable shower fragmentation
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Reconstructing the event (2)

• In the V view, there are some additional issues:

• Both the muon and pion have additional separately clustered 
segments due to the more transverse topology

• However, the child proton of the pion is separately 

reconstructed

• The shower reconstruction exhibits similar fragmentation

• The W view, not shown, has similar features, though a

better a track reconstruction

V
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• There are more than 100 algorithms available to Pandora’s pattern recognition process, so to

help narrow things down, we’ll highlight a few potentially interesting algorithms that might help

resolve some or all of these issues

• We won’t go through the details now, but in the backup section of these slides are brief

descriptions of what these algorithms do, with a focus on the 2D algorithms

• 2D clustering algorithms – these can be used after algorithms like LArTransverseExtension
• LArCrossGapsAssociation, LArCrossGapsExtension, LArOvershootSplitting, LArBranchSplitting, LArKinkSplitting, 

LArTrackConsolidation, LArHitWidthClusterMerging

• Note these algorithms run for each of U, V and W, and so anything you add must be replicated in each of the 

relevant sections

• 2D mop up algorithms – can be used after LArThreeDShowers
• LArBoundedClusterMopUp, LArConeClusterMopUp, LArNearbyClusterMopUp

A few pointers (1)
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• There are more than 100 algorithms available to Pandora’s pattern recognition process, so to

help narrow things down, we’ll highlight a few potentially interesting algorithms that might help

resolve some or all of these issues

• We won’t go through the details now, but in the backup section of these slides are brief

descriptions of what these algorithms do, with a focus on the 3D algorithms

• 3D track algorithms – can be used after LArThreeDLongitudinalTracks
• LArThreeDTrackFragments

• 3D recovery algorithms - can be used after LArThreeDShowers
• LArVertexBasedPfoRecovery, LArParticleRecovery

• 3D mop up algorithms - can be used after LArThreeDHitCreation
• LArSlidingConePfoMopUp, LArSlidingConeClusterMopUp, LArIsolatedClusterMopUp

A few pointers (2)
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• We’re going to use Pandora’s event display to explore how the clustering proceeds in an effort to

understand where we might want to intervene

• We’ll start by focusing on the 2D clustering algorithms: After the W view <LArClusteringParent>  
algorithm (check it’s in the W view block), add the following instance of the LArVisualMonitoring 
algorithm

• You may also want to set ShouldDisplayAlgorithmInfo to true at the beginning of both the 
master and neutrino XML, in order to keep track of where you are as you step through the 
event displays

Understanding the reconstruction (1)

<!-- TwoDReconstruction -->
...
<algorithm type = "LArClusteringParent">

<algorithm type = "LArTrackClusterCreation" description = 
"ClusterFormation"/>
<InputCaloHitListName>CaloHitListW</InputCaloHitListName>
...

</algorithm>

<algorithm type = "LArVisualMonitoring">
<ClusterListNames>ClustersW</ClusterListNames>
<ShowDetector>true</ShowDetector>

</algorithm>
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• Run Pandora and start to observe how 

the clustering proceeds

• Focus on the W view to begin with by

deselecting the other views in the tree

• Note how small many of the clusters are

• Provisional clustering is track-centric and 

quite strict

• Ambiguity, gaps or sharp deviations in 
trajectory limit the growth of clusters

• In this view there aren’t many ambiguities, so 
there’s little doubt about how the tracks 
should grow, and they’re well reconstructed

• The showers are fragmented

Understanding the reconstruction (2)
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• Now add another instance of the LArVisualMonitoring algorithm, but this time just after the

<LArCutClusterCharacterisation> algorithm, shown below

• Here we’ll look add clusters in all views, but focus on the W view in the next slide, along with the

selected Neutrino interaction vertex (which, being in 3D, only projects onto the W view)

• The vertex is an important reference point for the reconstruction, so errors here can have knock on effects

• In DUNE, Pandora employs a deep neural network to determine the vertex location

• Re-run Pandora to see this new event display (if you haven’t removed it, you’ll need to skip past

the previous event display first)

Understanding the reconstruction (3)

<algorithm type = "LArCutClusterCharacterisation">
<InputClusterListNames>ClustersU ClustersV 
ClustersW</InputClusterListNames>
<ZeroMode>true</ZeroMode>

</algorithm>

<algorithm type = "LArVisualMonitoring">
<ClusterListNames>ClustersU ClustersW ClustersW</ClusterListNames>
<VertexListNames>NeutrinoVertices3D</VertexListNames>
<ShowDetector>true</ShowDetector>

</algorithm>
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• You’ll see more complete clusters as 
some ambiguities are resolved, but now 
the reconstructed neutrino interaction 
vertex as well

• Pandora renders these vertices in yellow, 
which can be tricky to spot

• If you expand the NeutrinoVertices3D node in 

the tree and select Vertex, you’ll see options 

to change the colour and size of the marker, 

as we’ve done here

• Here the vertex appears well placed

• The track clusters are improved
• The pion and child proton are separated

• Note the entire muon is actually

reconstructed at this early stage, so it gets 

broken later

Understanding the reconstruction (4)
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• Next we’ll add another instance of the LArVisualMonitoring algorithm, now just after the <!-- 

ThreeDTrackAlgorithms --> block, shown below

• We’ll focus on the W view again here, but all three views are available in the full visualization,

because that’s typically most useful

• Re-run Pandora to see this new event display

Understanding the reconstruction (5)

<!-- ThreeDTrackAlgorithms -->
...
<algorithm type = "LArThreeDLongitudinalTracks">

<InputClusterListNameU>ClustersU</InputClusterListNameU>
<InputClusterListNameV>ClustersV</InputClusterListNameV>
<InputClusterListNameW>ClustersW</InputClusterListNameW>
<OutputPfoListName>TrackParticles3D</OutputPfoListName>
<TrackTools>

<tool type = "LArClearLongitudinalTracks"/>
<tool type = "LArMatchedEndPoints"/>

</TrackTools>
</algorithm>

<algorithm type = "LArVisualMonitoring">
<ClusterListNames>ClustersU ClustersV ClustersW</ClusterListNames>
<ShowDetector>true</ShowDetector>

</algorithm>
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• Given the track reconstruction already 
looked quite complete before this point, 
we wouldn’t expect to see much here

• However, one notable change is that our 

muon track has been erroneously split 

by the 3D track algorithms

• Can you tell why? Hint: Pandora is using 

information from all three views at this point

• Note: Superficially, it looks like the proton 
downstream of the pion has been merged, 
but this is just a coincidence of colour 
assignment, the particles remain distinct

Understanding the reconstruction (6)
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• Next, visualize just after the <!– ThreeDShowerAlgorithms --> block, shown below

• We’ll focus on the W view again here, but all three views are available in the full visualization,

because that’s typically most useful

• Re-run Pandora to see this new event display

Understanding the reconstruction (7)

<!-- ThreeDShowerAlgorithms -->
...
<algorithm type = "LArThreeDShowers">

<InputClusterListNameU>ClustersU</InputClusterListNameU>
<InputClusterListNameV>ClustersV</InputClusterListNameV>
<InputClusterListNameW>ClustersW</InputClusterListNameW>
<OutputPfoListName>ShowerParticles3D</OutputPfoListName>
<ShowerTools>

<tool type = "LArClearShowers"/>
<tool type = "LArSplitShowers"/>
<tool type = "LArSimpleShowers"/>

</ShowerTools>
</algorithm>

<algorithm type = "LArVisualMonitoring">
<ClusterListNames>ClustersU ClustersV ClustersW</ClusterListNames>
<ShowDetector>true</ShowDetector>

</algorithm>
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• Here we can see a small amount of 
merging of the clusters in the largest 
shower has been undertaken, but 
fragmentation remains high

Understanding the reconstruction (8)
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Fixing the reconstruction output
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• You’ve seen what the final event looks like, and you’ve seen

how the reconstruction moves forward in a few key places

• Broadly, the tracks are reasonable except where the muon overlaps 
with one of the shower, but the showers are highly fragmented

• Now you need to see if you can modify the reconstruction 

algorithm chain to improve the outcome to something 

closer to the image on the right

• Choose from among the suggestions on the “pointers” 
slides in the previous section and the guide to those 
algorithms in the next section to try to improve the 
reconstruction

• You may need to undertake some tuning of algorithm parameters 

for the best results – but don’t over-tune!

• If you make progress on this event (don’t expect to fix it 
completely – if you do, please share!), feel free to explore 
other events in this file and fix those too!

The nature of the problem
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• Let’s say you want to add the HitWidthClusterMerging algorithm to the end of the 2D

clustering (we’ll look at just one of the views here, but remember the initial clustering runs

for each view)

• The simplest addition is to add a single line which includes an algorithm with type 

LArHitWidthClusterMerging, that uses default parameters

• Note that while the class is called HitWidthClusterMergingAlgorithm, the algorithm name is 
LArHitWidthClusterMerging

• This is a common mapping of class to algorithm name, but you can find the full set of mappings  here, where you 

can search for the class name to find the corresponding XML algorithm type.

• If you want to modify parameters of the algorithm the update is slightly different…

A very brief guide to adding algorithms to the XML (1)

<!-- TwoDReconstruction -->
...
<algorithm type = "LArClusteringParent">

<algorithm type = "LArTrackClusterCreation" description = 
"ClusterFormation"/>
<InputCaloHitListName>CaloHitListW</InputCaloHitListName>
...

</algorithm>
...
<algorithm type = "LArTransverseExtension"/>
<algorithm type = "LArHitWidthClusterMerging"/>

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArContent.cc
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• Let’s say you want to add the HitWidthClusterMerging algorithm, but this time with a custom 

value for MinClusterSparseness

• Here the update now looks like this

• Any parameters you want to modify are contained within the algorithm block

• As will be noted in the next section, the collection of modifiable parameters can be found in each algorithm’s

ReadSettings function

A very brief guide to adding algorithms to the XML (2)

<!-- TwoDReconstruction -->
...
<algorithm type = "LArClusteringParent">

<algorithm type = "LArTrackClusterCreation" description = 
"ClusterFormation"/>
<InputCaloHitListName>CaloHitListW</InputCaloHitListName>
...

</algorithm>
...
<algorithm type = "LArTransverseExtension"/>
<algorithm type = "LArHitWidthClusterMerging">

<MinClusterSparseness>0.2</MinClusterSparseness>
</algorithm>

Note, the closing forward 
slash is dropped when we 
expand the block
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A Brief Guide to the Algorithms of 
Interest
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2D clustering algorithms
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• This algorithm attempts to connect trajectories that may span gaps in the detector readout (e.g. 

dead channels, or gaps between APAs)

• As with many of the 2D algorithms, the clusters are first filtered according to selection criteria to

determine if they should participate in the algorithm

• A cluster must have a minimum number of hits and layers (you can think of a layer and a wire as synonymous)

• The selection criteria and other parameters can be tuned in XML. The ReadSettings function is a useful resource

• The resultant selected clusters are sorted by the starting layer

• Selected clusters are considered pairwise
• Clusters are checked to see if they point in an approximately common direction and have start and end positions that 

could be consistent with belong to the same trajectory

• Trajectories are then projected beyond a cluster in the direction of the target cluster and the target cluster is

sampled to see if it is consistent with the projected trajectory

• If enough points match (within a tolerance) the clusters can be associated

• Clusters association must be bidirectional, it’s not enough for one cluster to point to the other

LArCrossGapsAssociation

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterAssociation/CrossGapsAssociationAlgorithm.cc
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• This algorithm attempts to connect trajectories that may span gaps in the detector readout (e.g. 

dead channels, or gaps between APAs), taking a different approach to the previous algorithm

• Clusters are first filtered according to selection criteria
• A cluster must have a minimum length

• See the ReadSettings function for more tunable parameters

• The resultant selected clusters are sorted by the number of hits

• Clusters are then checked for proximity to a gap

• Selected clusters are considered pairwise
• In this algorithm, a pointing cluster is created from each cluster, which considers the local trajectory more strongly than 

the overall cluster trajectory

• If each pointing cluster is close enough to the position of the target pointing cluster across the gap and the angle 

across the gap is not too large, the clusters are associated

• As before, associations must be bidirectional

LArCrossGapsExtension

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterAssociation/CrossGapsExtensionAlgorithm.cc
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• This algorithm attempts to identify cases where hit clustering 
may have been overzealous, and continued to add hits where an 
alternative clustering was available

• Clusters are first filtered according to selection criteria
• A cluster must have a minimum length

• See the ReadSettings function for more tunable parameters

• The resultant selected clusters are sorted by the number of hits

• Selected clusters are considered pairwise
• The algorithm looks for locations where projections of one cluster 

intersect the other

• If these distance between the clusters is not too large, the intersection of

the projections is determined

• If this intersection is sufficiently far along a cluster (i.e. we’re not too 
close to a possible, legitimate, vertex), the cluster is considered for 
splitting

LArOvershootSplitting

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterSplitting/OvershootSplittingAlgorithm.cc
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• This algorithm attempts to identify instances where the continuation and 

branching of two clusters may have been wrong

• Clusters are first filtered according to selection criteria
• A cluster must have a minimum length

• See the ReadSettings function for more tunable parameters

• Selected clusters are considered pairwise
• The algorithm looks for locations where one cluster appears to emerge from another

• The angle shouldn’t be too big (i.e. the clusters propagate in similar directions

• If a redistribution of the hits leads to more consistent trajectories, the clusters are 

split

LArBranchSplitting

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterSplitting/BranchSplittingAlgorithm.cc


37

• As the name suggests, this algorithm attempts to identify sharp direction changes within a 

cluster that may indicate a need to split the cluster

• Clusters are first filtered according to selection criteria
• A cluster must have a minimum length

• See the ReadSettings function for more tunable parameters

• Selected clusters are considered individually
• The algorithm performs sliding fits along the cluster trajectory

• The angle between fits that cover adjacent sliding windows is determined

• The maximum angle across all fit comparisons is identified

• If the angle is too large, the cluster is split at the midpoint of relevant fits

LArKinkSplitting

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterSplitting/KinkSplittingAlgorithm.cc
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• This algorithm attempts to identify instances where shower-like clusters have stolen hits from 

track-like clusters

• Clusters are first filtered according to selection criteria
• A track cluster must have a minimum length

• A shower cluster must have a maximum length

• See the ReadSettings function for more tunable parameters

• Selected clusters are considered pairwise
• The algorithm checks to ensure the shower-like cluster is at most half the size of the track-like cluster

• The algorithm then looks for shower hits that appear to fill gaps in the track-like trajectory

• If such hits are found, they are removed from the shower-like cluster and added to the track-like cluster

LArTrackConsolidation

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterSplitting/TrackConsolidationAlgorithm.cc
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• This algorithm attempts to merge clusters involving wide hits
• Wide hits are liable to occur when many drift electrons arrive at a small number of wires in quick succession

• This produces a very wide signal from which a small number of hits are created

• Such hits can be difficult to merge because the infinitesimal position of hits can be widely separated

• Clusters are first filtered according to selection criteria
• A cluster must have a sufficiently large average hit width

• See the ReadSettings function for more tunable parameters

• Selected clusters are considered pairwise
• The algorithm looks for a potential merge point for the clusters (not necessarily end-to-end as wide hits can lead 

to overlap)

• The individual clusters are checked for a sufficiently similar direction

• The direction of a potential merged cluster is also compared to those original directions to ensure it does not 

change too much

• If everything is consistent, the clusters are merged

LArHitWidthClusterMerging

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterAssociation/HitWidthClusterMergingAlgorithm.cc
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• This algorithm attempts to grow (by default) shower clusters

• Clusters are first filtered according to selection criteria
• A cluster must have a minimum length

• See the ReadSettings* function for more tunable parameters

• Selected clusters are considered pairwise
• The algorithm finds particles produced by inter-plane matching and extracts their clusters (particle clusters)

• The algorithm identifies clusters that did not produce particles by inter-plane matching (remnant clusters)

• The edges of the shower are identified for the particle clusters by constructing bins along a track-like fit of the 

shower that span the perpendicular extent of the shower at that point

• If a sufficiently large fraction of the hits in remnant clusters are bounded by the particle cluster edges, the 

clusters are merged

LArBoundedClusterMopUp

* Most algorithms in Pandora derive directly from the Algorithm class, but some, like this one, inherit from other classes. In this case, it 
can be useful to check if this base class has its own parameters (which you can then override in this algorithm’s XML paramet ers), 
which are set in its own ReadSettings function. To see what extra parameters are available, you can look at its corresponding  header 
file and see which class it inherits from. You can find the location of the corresponding base class by searching for the class in the 
LArContent class includes list.

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterMopUp/BoundedClusterMopUpAlgorithm.cc
https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterMopUp/BoundedClusterMopUpAlgorithm.h
https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArContent.cc
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• This algorithm attempts to grow (by default) shower clusters
• See the ReadSettings function for more tunable parameters

• Selected clusters are considered pairwise
• The algorithm finds particles produced by inter-plane matching and extracts their clusters (particle clusters)

• The algorithm identifies clusters that did not produce particles by inter-plane matching (remnant clusters)

• A fit is performed through the hits in the particle cluster

• Walking along that fit, the positive maximally transverse coordinate are collected and a fit performed

• Walking along that fit, the negative maximally transverse coordinate are collected and a fit performed

• These two “edges” about the overall fit define a search cone

• If a sufficiently large fraction of the hits in remnant clusters are bounded by the particle cluster edges, the 
clusters are merged

LArConeClusterMopUp

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterMopUp/ConeClusterMopUpAlgorithm.cc
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• This algorithm attempts to grow (by default) shower clusters
• See the ReadSettings function for more tunable parameters

• Selected clusters are considered pairwise
• The algorithm finds particles produced by inter-plane matching and extracts their clusters (particle clusters)

• The algorithm identifies clusters that did not produce particles by inter-plane matching (remnant clusters)

• The remnant clusters must have a minimum number of hits

• If a remnant cluster is sufficiently close to a particle cluster, it can be merged

LArNearbyClusterMopUp

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterMopUp/NearbyClusterMopUpAlgorithm.cc
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3D track algorithms
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LArThreeDTrackFragments

• This algorithm attempts to create particles in instances in which we have two 

well-reconstructed views, and a third fragmented view

• See the ReadSettings function for more tunable parameters

• The algorithm ONLY considers clusters that are not owned by an existing particle

• It identifies pairs of clusters (in different views) with significant overlap in the drift coordinate

(and thus likely to belong to the same particle)

• Starting from the ‘best pair’:
• The clusters are used to create projected positions in the ‘missing’ view

• For each projected position, the closest ‘available’ hit is sought

• The clusters to which these hits belonged are together postulated to for the third cluster of the particle

• If the, now, three-cluster match presents a consistent 3D image a particle is created

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArThreeDReco/LArTrackFragments/ThreeViewTrackFragmentsAlgorithm.cc
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3D recovery algorithms
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LArVertexBasedPfoRecovery

• This algorithm attempts to recover any ‘tiny’ particles coming out of the neutrino vertex e.g.

tiny proton stubs

• See the ReadSettings function for more tunable parameters

• It first identifies all ‘available’ clusters ‘close-to’ the neutrino vertex

• It then attempts to ‘match’ found clusters across the views – to do this we refer to the overlap of 

the clusters in the drift coordinate and a ‘pseudo chi-squared’ metric that measures the extent 

to which a consistent 3D image can be formed

• First, three cluster matches are sought and particles are created in order of the best ‘chi-

squared’

• Next, two cluster matches are sought, and again particle creation is prioritised by the ‘chi- 

squared’ metric

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArThreeDReco/LArPfoRecovery/VertexBasedPfoRecoveryAlgorithm.cc
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LArParticleRecovery

• This algorithm attempts to reconstructed hitherto ‘missed’ particles
• See the ReadSettings function for more tunable parameters

• First, it identifies all ‘available’ clusters above a user defined ‘size’

• If the algorithm is running in ‘vertex mode’, tiny stub-like clusters originating from clusters

coming out of the vertex are also identified

• Pairs of matches across the three views are sought (a cluster can exist in multiple pairs) – to do 

this we refer to the overlap of the clusters in the drift coordinate

• These pairs are then examined to identify groups of clusters that exist within the same drift 

region

• If the group corresponds to a triplet or doublet of clusters (each belonging to a different view) a 

particle is created

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArThreeDReco/LArPfoRecovery/ParticleRecoveryAlgorithm.cc
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3D mop up algorithms
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LArSlidingConePfoMopUp

• This algorithm attempts to optimise shower completeness by merging shower fragments into 

their parent shower

• See the ReadSettings function for more tunable parameters

• First, all 3D showers and ‘small’ tracks are identified (these are the only particles considered in

the algorithm)

• For each ‘large’ 3D shower:
• we walk along it’s central axis, drawing a 3D cone at each point with an opening angle and length that increases

with distance along the shower

• any particles that are ‘significantly’ contained within a cone are recorded, alongside their potential parent

• After this process, a particle may have multiple potential parents, and ambiguities are resolved 

by picking the parent that most contained the particle

• Merges are then performed, and recursive merging is allowed (if running in vertex mode,

which is the default, particles in ‘close’ proximity to the neutrino vertex cannot be merged)

• This whole process runs recursively, until no more merges can be made

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArThreeDReco/LArPfoMopUp/SlidingConePfoMopUpAlgorithm.cc
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LArSlidingConeClusterMopUp

• This algorithm attempts to optimise shower completeness by merging ‘lost’ 2D clusters into

their parent shower

• See the ReadSettings function for more tunable parameters

• ‘Significant’ 3D showers and ‘small’ 3D tracks are collected and are the seed particles the

algorithm will look to grow

• ‘Small’ 2D clusters, that do not yet belong to any particles, are identified and are the clusters

the algorithm will use to grow the showers with

• For each seed particle:
• we walk along it’s central axis, drawing a 3D cone at each point

• the cone is projected in each 2D view, and any clusters that are ‘significantly’ contained within a cone are

recorded, alongside their potential parent

• After this process, a particle may have multiple potential parents, and ambiguities are resolved 

by picking the parent that most contained the particle

• Merges are then performed, and recursive merging is allowed

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterMopUp/SlidingConeClusterMopUpAlgorithm.cc
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LArIsolatedClusterMopUp

• This algorithm is one of the final algorithms to run in Pandora

• Its job is to make sure that as many of the input hits as is possible are included in the

reconstruction output

⇒ limiting the missing energy in downstream energy estimations

• See the ReadSettings function for more tunable parameters

• It first finds the ‘seed’ 3D particles to grow – this is configurable and is either all shower

particles (default) or all showers and tracks

• It then identifies all remaining ‘small’ 2D clusters and ‘dissolves’ them into their 2D hits

• Each, now free, 2D hit is added to the closest cluster – only if the cluster is within some 

proximity

• The hits are added as ‘isolated hits’

• Isolated hits do not contribute to trajectory fits but do contribute to energy calculations

https://github.com/PandoraPFA/LArContent/blob/1cb8ad36ff315fa421e86a5e747cdcbb163d3022/larpandoracontent/LArTwoDReco/LArClusterMopUp/IsolatedClusterMopUpAlgorithm.cc

